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PREFACE.

IN the following work I have tried to present the
elements of Coordinate Geometry in a manner
suitable for Beginners and Junior Students. The
present book only deals with Cartesian and Polar
Coordinates. Within these limits I venture to hope
that the book is fairly complete, and that no proposi-
tions of very great importance have been omitted.

* The Straight Line and Circle have been treated
more fully than the other portions of the subject,
since it is generally in the elementary conceptions
that beginners find great difficulties.

There are a large number of Examples, over 1100
in all, and they are, in general, of an elementary
character. The examples are especially numerous in

the earlier parts of the book.



vi PREFACE.

I am much indebted to several friends for reading
portions of the proof sheets, but especially to Mr W.
J. Dobbs, M.A. who has kindly read the whole of the

book and made many valuable suggestions.

For any scriticisms, suggestions, or corrections, I

shall be grateful.
S. L. LONEY.

Rovar Horroway Correee ror WOMEN,
EaBAM, SURREY.
July 4, 1895.

PREFACE TO THE SECOND EDITION.

For the Second Edition the time at my disposal
has only allowed me to correct the misprints that have
been kindly pointed out to me by many correspondents.
Art. 180 has also been rewritten.

June 30, 1896.
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CHAPTER L

INTRODUCTION.

SOME ALGEBRAIC RESULTS.

1. Quadratic Equations. The roots of the quad-
ratic equation

a?+bx+c=0
may easily be shewn to be
~b+Jb—4ac _, —b— Wb —4ac
and
2a 2a

They are therefore real and unequal, equal, or imaginary,
according as the quantity b*—4ac is positive, zero, or negative,
i.e. according as b* Z 4ac.

2. Relations between the roots of any algebraic equation
and the coefficients of the terms of the equation.

If any equation be written so that the coefficient of the
hlighest term is unity, it is shewn in any treatise on Algebra
that

(1) the sum of the roots is equal to the coefficient of
the second term with its sign changed,

(2) the sum of the products of the roots, taken two
at a time, is equal to the coefficient of the third term,

(3) the sum of their products, taken three at a time,
is equal to the coefficient of the fourth term with its sign
changed,

and so on.
L. ¢ 1



2 COORDINATE GEOMETRY.
Bx. 1. Ifaandp be the roots of the equation
az+ bz +¢=0, i.c. z’+g x +f—l=o,
we have a+ﬁ=—li and aﬁ=£.
a a

Bx. 3. Ifa, g, and v be the roots of the cubic equation
az®+bzd+cx + d=0,

i.e. of . z’+’1a:’+5z+‘-i=0,
a a a
b
we have a+ﬁ+7=—‘—l,
¢
Br+yatap=2,
d
and afy= ~a°

8. It can easily be shewn that the solution of the
equations
ax+by+cz=0,
and ax+ by +cz=0,
x Yy %

- bioa—bye,  Cin— 0y  Gaby— by’

V Determinant Notation.

is called a determinant of the
by, b,

second order and stands for the quantity a,b, — a,b,, so that
@y Ay
by, b

Bxs. (l) Ii:2=2x5-4x8=10-12=_2;

4. The quantity ia" %

=a,by — a,h,.

(i) l:: ::i=—3x(—6)-(—7)x(-4)=18—28=—10.




DETERMINANTS. 3

01, Oy, Gy
Byy By Bs|.oveerreerreneereanen, 1)

e, &, ¢
is called a determinant of the third order and stands for the
quantity ’

b, 5,

Cyy Cy

5. The quantity

bn bs bn b.
€y C3 €1 O3
s.e. by Art. 4, for the quantity

@ (bz"a —byCy) — ag (bycs — bse,) + @y (b163— byey),
t.e. @, (bses = bsea) + @y (Bye, — bycs) + a (Bica — bycy).

6. A determinant of the third order is therefore reduced
to three determinants of the second order by the following
rule:

Take in order the quantities which occur in the first row
of the determinant; multiply each of these in turn by the
determinant which is obtained by erasing the row and
column to which it belongs; prefix the sign + and — al-
ternately to the products thus obtained and add the
results.

Thus, if in (1) we omit the row and column to which a,

ba, by and this is the
Cqy C3

o X - + Gy

belongs, we have left the determinant

coefficient of a, in (2). _
Similarly, if in (1) we omit the row and column to which
by, b, .
and this

€1y Cs

with the — sign prefixed is the coefficient of a; in (2).

a, belongs, we have left the determinant

’ 1, -2, -3
9. Bx. The determinant ‘—4, 5, -6
-7, 8, -9
_1.]8 -6 -4, -6 -4,5
=1x 8, _gl—(—2)x'_7' _9|+(—3) x|_7.8

={6x(-9)-8x(-6)}+2x {(-4) (-9)-(-7)(-6)}

-3x{(-4)x8-(-T)xb6}
={-45+48} +2{86-42} -8{ -32+385}
=8-12-9=-18,

1—2



4 COORDINATE GEOMETRY.

Oy Qgy Gy Ay
by by, bsy b,

Cyy Cgy C3y C4

dlr d29 d:u d‘

is called a determinant of the fourth order and stands for
the quantity

8. The quantity

by, b, b, byy b, b,
@) X |Cgy C3y Cq|— Qg X |Cyy C3y C4
dyy dy, d, d,, d, d,
by, by, b, by, by, b,
+ a3 X |Cy Cgy C5l —ALX €, Cgy Cg),
d,, dy, d, d,, d,, dy

and its value may be obtained by finding the value of each
of these four determinants by the rule of Art. 6.

The rule for finding the value of a determinant of the
fourth order in terms of determinants of the third order is
clearly the same as that for one of the third order given in
Art. 6.

Similarly for determinants of higher orders.

9. A determinant of the second order has two terms.
One of the third order has 3 x 2, 1.e. 6, terms. One of the
fourth order has 4 x 3 x 2, t.e. 24, terms, and so on.

10. Bxs. Prove that

5 -8 7
2, -3 -6, 17 ! ’
1) |4 8[:28. 2) l_4 _9I=82. 3 |-2 4, - 8/=-98.
’ ' ! 9, 8, -10|
9, 8,17 -a, b, c
(4) 6,5, 4!:0. (5) a, -b, c¢|=4abc.
8,2, 1. ;o a b, -C
a, h9 9‘ :
(6) |h, b, f]=abe+2fgh—af?-bg?—ch?

g, 1, ¢l

B S )
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ELIMINATION. 5
Elimination.
11. Suppose we have the two equations
G +ay=0..cccoceiiin.n. (1),
b +by =0 ..ioeviniiniininnn. (2),

between the two unknown quantities « and y. There must
be some relation holding between the four coeflicients a,, a,,
b,, and b,. For, from (1), we have

I__%
y @
x b,
and, from (2), we have —=-—22.
Yy b,
Equating these two values of ;i; we have
b, a,
b a’
i.e @by —ah,=0....ocooeiin. (3).

The result (3) is the condition that both the equations
(1) and (2) should be true for the same values of = and y.
The process of finding this condition is called the elimi-
nating of « and y from the equations (1) and (2), and the
result (3) is often called the eliminant of (1) and (2).

Using the notation of Art. 4, the result (3) may be
Gy Gy _ 0.
by, b,

This result is obtained from (1) and (2) by taking the
coefficients of « and y in the order in which they occur in
the equations, placing them in this order to form a determi-
nant, and equating it to zero.

written in the form

12. Suppose, again, that we have the three equations

ax+ay+az=0............... (1),
b+ by +bz=0......coeniil (2),
and 4 ey +ez=0 ... (3),

between the three unknown quantities x, y, and 2.



6 COORDINATE GEOMETRY.

By dividing each equation by 2 we have three equations
between the two unknown quantities gand g Two of

these will be sufficient to determine these quantities. By
substituting their values in the third equation we shall
obtain a relation between the nine coefficients,

Or we may proceed thus. From the equations (2) and
(3) we have

x 0y z
bocy — byey  byey — bycy bx"z -be"
Substituting these values in (1), we have

Ny
@y (Byts = byca) + @y (bser = bids) + @y (Bicy — byey) = 0...(4).
This is the result of eliminating z, y, and 2 from the
equations (1), (2), and (3).

But, by Art. 5, equation (4) may be written in the form

a5 Gy Oy
by by, b,
€5 C3y C3

This eliminant may be written down as in the last
article, viz. by taking the coefficients of , y, and z in the
order in which they occur in the equations (1), (2), and (3),
placing them to form a determinant, and equating it to
zero.

=0.

18. Bx. What is the value of a so that the equations
az+2y +82=0, 2z-3y+4z=0,
and : bz +Ty-82=0
may be simultaneously true?
Eliminating z, y, and z, we have

a 2, 38
2, -3, 4|=0,
5 1, -8
ie a[(-3)(-8)-4xT]-2[2x(-8)-4x5]+8[2xT7-5x(-3)]=0,
ie. a[-4]-2[-86]+3[29]=0,
72+87 159

8o that

4 4



ELIMINATION. 7

14. If again we have the four equations
G2 + Gy + B3z + au = 0,
bz + by + bz + bu =0,
CQE+ Y + 6z + cu=0,
and dx+dyy+dyz +du=0,

it could be shewn that the result of eliminating the four
quantities «, y, 2, and u is the determinant

Gyy Gyy Gyy Gy
by, by, bs, B,
€1y €3y C3y C4
d,, dy, dy, d,
A similar theorem could be shewn to be true for n

equations of the first degree, such as the above, between
=« unknown quantities,

It will be noted that the right-hand member of each of
-the above equations is zero.

=0.



CHAPTER IL

COORDINATES. LENGTHS OF STRAIGHT LINES AND
AREAS OF TRIANGLES.

15. Coordinates. Let O0X and OY be two fixed
straight lines in the plane of the paper. The line OX is
called the axis of «, the line OY the axis of y, whilst the
two together are called the axes of coordinates.

The point O is called the origin of coordinates or, more
shortly, the origin.

From any point P in the

plane draw a straight line R P
parallel to OY to meet OX M
in M.

MP the Ordinate of the point
P, whilst the abscissa and the
ordinate together are called
its Coordinates.

Distances measured parallel to OX are called , with
or without a suffix, (e.g9. %, %,... &, &”,...), and distances
measured parallel to OY are called y, with or without a
suffix, (e.g. 1, ¥a5.-- ¥ ¥'s--.)-

If the distances OM and MP be respectively z and g,
the coordinates of P are, for brevity, denoted by the symbol
(= y)-

Conversely, when we are given that the coordinates of
a point P are (z, y) we know its position. For from O we
have only to measure a distance OM (=) along 0X and

4
The distance O is called X' Mz My /O M X
the Abscissa,and the distance B
Pa Y'
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then from M measure a distance P (=y) parallel to 0
and we arrive at the position of the point 2. For example
in the figure, if OM be equal to the unit of length and
MP=20M, then P is the point (1, 2).

16. Produce XO backwards to form the line OX' and
YO backwards to become OY'. In Analytical Geometry
we have the same rule as to signs that the student has
already met with in Trigonometry.

Lines measured parallel to 0.X are positive whilst those
measured parallel to OX' are negative; lines measured
parallel to OY are positive and those parallel to OY’ are
negative.

If P, be in the quadrant YOX' and P,M,, drawn
parallel to the axis of y, meet OX’ in M,, and if the
numerical values of the quantities OM, and M,P, be a
and b, the coordinates of P are (—a and b) and the position
of P, is given by the symbol (— a, b).

Similarly, if P, be in the third quadrant X'0Y’, both of
its coordinates are negative, and, if the numerical lengths
of OM, and M,P, be ¢ and d, then P, is denoted by the
symbol (- ¢, - d).

Finally, if P, lie in the fourth quadrant its abscissa is
positive and its ordinate is negative.

17. Bx. Lay down on paper the position of the points
(i) (2, —1)9 (h) ('3' 2): and (lh) (' 2 - 3)'
To get the first point we measure a distance 2 along 0X and then
a distance 1 parallel to OY’; we thus arrive at the required point.

To get the second point, we measure a distance 3 along 0X’, and
then 2 parallel to OY.

To get the third point, we measure 2 along OX’ and then
3 parallel to 0Y".

These three points are respectively the points P,, P,, and P; in
the figure of Art. 15. eom :

18. When the axes of coordinates are as in the figure
of Art. 15, not at right angles, they are said to be Oblique
Axes, and the angle between their two positive directions
0X and O0Y, i.e. the angle XOY, is generally denoted by -
the Greek letter o.
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In general, it is however found to be more convenient to
take the axes OX and OY at right angles. They are then
said to be Rectangular Axes.

It may always be assumed throughout this book that
the axes are rectangular unless it is otherwise stated.

19. The system of coordinates spoken of in the last
few articles is known as the Cartesian System of Coordi-
nates. It is so called because this system was first intro-
duced by the philosopher Des Cartes. There are other
systems of coordinates in use, but the Cartesian system is
by far the most important.

20. To find the distance between two pomts whose co-

ordinates are given.

Let P, and P, be the two
given points, and let their co-
ordinates be respectively (z,, y,)

and (x,, ¥y).

Draw P,M, and P,M, pa-
rallel to 0Y, to meet 0X in
M, and M,. Draw P,R parallel
to OX to meet M. P, in R. R

Then

PR=MM =0M,-OM,=2,—x,,
RP,=M\P, - M,P,=y,~y,,
and ¢ P,RP,=t0MP =180°-P M, X=180"—-w.
‘We therefore have [ Trigonometry, Art. 164]
P,P2=P,R*+ RP*-2P,R . RP, cos P,RP,
= (2= )" + (41— 2)* — 2 (1 — @3) (%1 — ) c0s (180° - w)
= (X — X2+ (y1 — ¥9)*+ 2 (x; — Xy (v, ~ ¥g) cos w..(1).

If the axes be, as is generally the case, at right angles,
we have w=90° and hence cos w=0.

The formula (1) then becomes

PP} = (2, — @) + (%1~ ¥2)>

4
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DISTANCE BETWEEN TWO POINTS. 11

so that in rectangular coordinates the distance between the

_bwo points (z,, y,) and (z,, #,) is

VA L A L e (2)-
Cor. The distance of the point (z,, ;) from the origin

is /7, + v}, the axes being rectangular. This follows from
(2) by making both z, and y, equal to zero.

21. The formula of the previous article has been proved for the
case when the coordinates of both the poiuts are all positive.|

Due regard being had to the signs of the coordinates, the formula
will be found to be true for all
points.

As a numerical example, let
P, be the point (5, 6) and P,
be the point (-7, —4), 8o that
we have

£,=5, y;=6, z,= -1,

and Y= —4.

Then
P,R=M,0+0M,=T+5
and =TatR
RP,=RM,+M,P,=4+6

=-¥Y2+%-
The rest of the proof is as in the last article.
Similarly any other case could be considered.

22.° To find the coordinates of the point which divides
in a given ratio (my :m,) the line joining two given points
(z1y 2) and (23, 3s). -

Let P, be the point (2, ,), P, the point (x,, 3,), and P
the rq;ulred point, so that we have

PP : PP, :: my:m,
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Let P be the point (v, y) so that if P,M,, PM, and
P, M, be drawn parallel to the axis of y to meet the axis of
z in M,, M, and M,, we have

OM,==z, M\P,=y,, OM =2, MP=y, CM,=u,,
and M,P,=y,.

Draw PR, and PR,, parallel to 0X, to meet MP and
M,P, in R, and R, respectively.

Then PR =MM=0M-0M,=x—aza,,
PR,= MM,=0M,- OM =z, —«,
’ RP=MP-MP =y-y,
and R,P,=M,P,— MP =y, —
From the similar triangles P,R,P and PR,P, we have
m PP PR =z-x
my. PP,” PR, x,-=
S my (7= z) =my (z—,),
="‘1“;z+"‘r'”l_

z.e.

8]

: my _ P, 11:’ RP _ y-u
aln —_— = = - =
Ag my PP, RP, y,-y’
8o that (92— y)=my (¥ —31),
and hence = MYa + MgYy .
my + my
The coordinates of the point which divides P, P, in-
ternally in the given ratio m, : m, are therefore

X+ T and T2t TV
m, + m, m, +m,

If the point @ divide the line PP, externally in the
same ratio, i.e. so that P,Q : QP, :: m, : m,, its coordinates
would be found to be

I, Xy = TX1 and 213 =13V
m, —m, m, —m,

The proof of this statement is similar to that of the

preceding article and is left as an exercise for the student.
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Cor. The coordinates of the middle point of the line
joining (z,, ) to (z,, ¥,) are
x—'%ﬁ and 5 -

28. Bx.1l. Inany triangle ABC prove that
AB*+AC*=2(4D3+ DCY),
where D is the middle point of BC.

Take B as origin, BC as the axis of z, and a line through B per-
pendicular to BC as the axis of y.

Let BC=a, so that C is the point (a, 0), and let 4 be the point
(-"1_» %)

Then D is the point (g o).

Nty

a\? a\?
Hence AD’:(x,-é) +,% and DC’:(Q) .

Hence 2(4AD*+ DC)=2| z2+y,* -az, + i:-']
=212+ 2y,? - 2az, + a3
Also AC=(z, - a)'+9,"
and AB*=z3+y2
Therefore AB*+ AC?* =222+ 2y,? - 2ar, +a*.
Hence AB%+ AC*=3(4D*+DCY).

This is the well-known theorem of Ptolemy.

Bx. 2. ABC is d'triangle and D, E, and F are the middle points
of the sides BC, CA, and AB; prove that the point which divides AD
internally in the ratio 2 : 1 also divides the lines BE and CF in
the same ratio.

Hence prove that the medians of a triangle meet in a point.

Let the coordinates of the vertices 4, B,and C be (z,, ¥,), (7., ¥5),
and (z;, y,) respectively.

The coordinates of D are therefore ‘f’;_.” and 72 ';;y,s .

Let G be the point that divides internally 4D in the ratio 2: 1,
and let-its coordinates be % and 7.

By the last article

)
2x 2 2ilxz
2= g t 1_.1:,+.r,+:cs.

2+1 )

80 y = y,li%: + Ys .
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In the same manner we could shew that these are the coordinates
of the points that divide BE and CF in the ratio 2 : 1.

Since the point whose coordinates are
' ’1+§z+“’a and_y‘+!;’+y’

lies on each of the lines 4D, BE, and CF, it follows that these three
lines meet in & point.
This point is called the Centroid of the triangle.

»

EXAMPLES. L

~ Find the distances between the following pairs of points.
(2, 8) and (5, 7). 2. (4, -7) and (-1, 5).
(-8, —2) and (-6, 7), the axes being inclined at 60°,
(a, 0) and (o, b). 5. (b+c, c+a) and (c+a,a+d).
(a cos a, a s8in a) and (a cos 8, a sin B).
(am?, 2am,) and (amy?, 2am,). .
. Lay down in a figure the positions of the points (1, —3) and
(-2, 1), and prove that the distance between them is 5.

9. Find the value of z, if the distance between the points (z,, 2)
and (3, 4) be 8.

10. A line is of length 10 and one end is at the point (2, -38);
if the abscissa of the other end be 10, prove that its ordinate must
3or -9.

11. Prove that the points (2a, 4a), (2a, 6a), and (2a+./3a, 5a)
are the vertices of an equilateral triangle whose side is 2a.

12. Prove that the points (-2, -1), (1, 0), (4, 3), and (1, 2) are.
at the vertices of a parallelogram.

13. Prove that the points (2, - 2), (8, 4), (5, 7), and (-1, 1) are
at the angular points of a rectangle.

14. Prove that the point (-, %) is the centre of the circle
circumseribing the triangle whose angular points are (1, 1), (2, 3),
and (-2, 2).

Find the coordinates of the point which

15, divides the line joining the points (1, 3) and (2, 7) in the
ratio 8 : 4.

16. divides the same line in the ratio 3 : - 4.

17. divides, internally and externally, the line joining (-1, 2)
to (4, -5) in the ratio 2 : 3.

N @
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18, divides, internally and externally, the line joining (-3, -4)
to (-8, 7) in the ratio 7 : 5.

19. The line joining the points (1, ~2) and (-8, 4) is trisected ;
find the ccordinates of the potnts of e ’ '

20. The line joining the points (-6, 8) and (8, - 6) is divided
into four equal parts; find the coordinates of the points of section,

21. Find the coordinates of the points which divide, internally
and externally, the line joining the point (a+b, a—d) to the point
(a-b,a+b)in the ratioa : b,

22. The coordinates of the vertioes of a triangle are s.-,‘, ;8]).
(zq, y,} and (zy, yy). The line joining the first two is divided in the
ratio ! : k, and the line joining this point of division to the o ite
angular point is then divided in the ratio m : k+l. Find the
coordinates of the latter point of section.

23. Prove that the coordinates, z and y, of the middle point of
the line joining the point (2, 8) to the point (3, 4) satisfy the equation
z-y+1=0.

24, If G be the centroid of a triangle 4ABC and O be any other
point, prove that

3(GA42+GB*+ GC?)=B(C?+ CA3+ AB3,
and 042+ 0B3+0C?*=GA*+ GB*+ G(3 +8GO0s.

25. Prove that the lines joining the middle jpoints of opposite
sides of a quadrilateral and the line joining the middle points of its
diagonals meet in & point and bisect one another.

) 281,) z!, B;)C,(D...Smnsognts 11:1 a gl;ne wtll:ose ooordmates(;li'e
z,, gy Yo)s (Zgs Yg)s-ooe is biseoted in the point G,; G,C is
dxlvnged' at G, in the ratio 1:2; G,D is divided at G, in 'the ratio
1:8; G,E at G, in the ratio 1 : 4, and so on until all the points are
exhausted. Shew that the coordinates of the final point 8o obtained are
BTy Tyt Ty o Vit Yat o Y
n n

[This point is called the Centre of Mean Position of the n given
points.]

27. Prove that a point can be found which is at the same
distance from each of the four points

(am,, ’%1 ’ (am,. ’%’). (an,, ’;—:;) , and ("T::’;:' am,m,m,).‘
24. To prove that the area of a trapezium, i.e. a quad-
rilateral having two sides parallel, is one half the sum of the

two parallel sdes multiplied by the perpendicular distamce
between them.
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Let ABCD be the trapezium having the sides AD and '
BC parallel. '

Join AC and draw AL perpen- A D..N
dicular to BC and CN perpendicular :
to AD, produced if necessary. :

Since the area of a triangle is one J—- r
half the product of any side and the
perpendicular drawn from the opposite angle, we have

area ABCD=AABC + AACD
=3.BC.AL+%.4D.CN
=3(BC +AD)x AL.

25. 7o find the area of the triangle, the coordinates of .
whose angular points are given, the axes being rectangular.

Let ABC be the triangle
and let the coordinates of its Y
angular points 4, B and C be
(1, %), (22, ¥s), and (5, Ys).

Draw AL, BM, and CN per-
pendicular to the axis of =, and H H
let A denote the required area. ; ; H

Then o L N M X
A=trapezium A LNC + trapezium C NMB—trapezium A LM B

=3LN(LA+ NC)+ JNM(NC + MB)—L1LM (LA + MB),
by the last article,
=3 [(zs = =) (31 + Ys) + (23 = x5) (¥ + ¥s) — (22— 2) (1 + 92) )
On simplifying we easily have
A =§ (X1¥3 = X;V; + X35 — XF; + X3V — X,F3),
or the equivalent form
A =3[ (12— ys) + 2 (Ys — 1) + 25 (1 — 9)):

If we use the determinant notation this may be written

(as in Art. 5)

Zy, %y 1,
A=}|2, 1 .
x5, Ysy 1 I
Cor. The area of the triangle whose vertices are the
origin (0, 0) and the points (x,, ¥,), (2., ¥,) is § (7, — 2y,).
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l) 26. In tie preceding article, if the axes be oblique, the perpen-
diculars AL, BM, and CN, are not equal to the ordinates y,, y,, and
y3, but are equnl respeotxvely to y, sin w, y, 8in @, and y, sin w.

The area of the triangle in this case becomes
38in w {2y, — Toy; + T - TyYs + 13y - T},
zZ, 9, 1
i.e. 3sin wx |z, y,, 1].
T3, Ysy 1

d 27. In order that the expression for the area in Art. 35 may be
8 positive quantity (as all areas neceasanl are) the points 4, B, and
C must be taken in the order in whloh they wonid be met b a.
person starting from 4 and walking round the triangle in su
manner that the area of the triangle is always on his left lumd
Otherwise the expressions of Art. 25 would be found to be negative.

28. To find the area of a quadrilateral the coordinates
of whose angular points are given.

]
'
'
v
]
'
]
i

o LR N M X
Let the angular points of the quadrilateral, taken in
order, be 4, B, C, and D, and let their coordinates be

respectively (z,, %), (%2, ¥2), (3, ¥s), and (2, v,)-
Draw AL, BM, CN, and DR perpendicular to the axis
of a.

Then the area of the quadrilateral
= trapezium ALRD + trapezium DRNC + trapezium CNMB
— trapezium ALMB
=4LR(LA+ RD)+4RN (RD+ NC’) +3INM(NC + MD)
— LM (LA + MB)
=3 {(@i—=) (v, + ./4) + (22— 22g) (43 + 94) + (22— 25) (y5 + ¥a)
= (2= @) (%1 + )}
=} {(zg— 2) + (s — T3Ys) + (XYa— 2 Ys) + (T~ Y )}
L. 2
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29. The above formula may also be obtained < by
drawing the lines 04, 0B, OC and OD. For the quadri-
lateral ABCD

=AO0BC+ AOCD - AOBA - AOAD.

But the coordinates of the vertices of the triangle 0. BC
are (0, 0), (x;, y,) and (w5, y;5); hence, by Art. 25, its
area is § (zy; — zy,)-

So for the other triangles.

The required area therefore

=} (@5 — @) + (%4s — 2@s) — (@3 — %:92) — (@Y —2y1) ]
=} [(zys — @) + (25 — Tay) + (@ — 2Ys) + (21 — 2:9,) |

In a similar manner it may be shewn that the area

of a polygon of n sides the coordinates of whose angular
points, taken in order, are

(@15 31), (2as Yol (%sy Ys)yee-(Tny Yn)
is ) [(wl.’/:_ xY1) + (XYs — Te) + ... + (Xuth — T1Y) ]

EXAMPLES. II.

Find the areas of the {riangles the coordinates of whose angular
points are respectively

(l’ 3)» (" 7’ 6) and (59 "'.1)‘ 2. (01 4)’ (3’ 6) and (_8, "2)-
(5’ 2)- ("9» - 3) and (_3- _5)"
(a, b+¢), (a, b-c) and (-aq, c).
(a, c+a), (a, c) and (-a, c-a).
(acos ¢,, bsin ¢,), (acos ¢y, bsin ¢,) and (a cos ¢;, b sin ¢,).
(am3, 2am,), (amg3, 2am,) and (amy?, 2amy).
{amymy, a (m,+my)}, {amyms, a (my+mg)} and
{amgm,, a (mg+m))}.

o 2] e 2] o o 3

Prove (by shewing that the area of the triangle formed by theln is
zero) that the followmg sets of three points are in a straight lin

0. (1,4), (3, -2), and (-3, 16).
Mli ("i’ 3), (_51 6)1 and (—8, 8).

2. (a,b+c), (b, c+a), and (c, a+d).

ON Do

ol
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Find the areas of the quadrilaterals the coordinates of whose
angular points, taken in order, are
13. (L 1), (3,4), (5 -2), and (4, -7).
14. ("l' 6)) (_3r _9): (5v _8)- and (3, 9)‘
15. If O be the origin, and if the coordinates of any two points
P, and P, be respectively (z,, y,) and (z,, y,), prove that
OP, . OP, . 008 P,OP, =223+ Y ¥s-

30. Polar Coordinates. There is another method,
which is often used, for determining the position of a point
in a plane.

Suppose O to be a fixed point, called the origin or
pole, and OX a fixed line, called the initial line.

Take any other point P in the plane of the paper and
join OP. The position of P is clearly known when the °
angle XOP and the length OP are given.

[For giving the angle XOP shews the direction in which OP is
drawn, and giving the distance OP tells the distance of P along this
direction.]

The angle XOP which would be traced out by the line
OP in revolving from the initial line OX is called the
vectorial angle of P and the length OP is called its radius
vector. The two taken together are called the polar co-
ordinates of P.

If the vectorial angle be 6 and the radius vector be r, the
position of P is denoted by the symbol (=, 6).

The radius vector is positive if it be measured from the-
origin O along the line bounding the vectorial angle; if
measured in the opposite direction it is negative.

81. Bx. Construct the positions of the points (i) (2, 30°),
@) (3, 150%), (iii) (-2, 459, (iv)
(-3, 830°), (v) (3, —210°) and (vi)
(-8, -80°).

(3] To construct the first point,
let the radius vector revolve from
OX through an angle of 30° and
then mark off along it a distance
equal to two units of length. We
thus obtain the point P,.

(i) For the second point, the radius vector revolves from OX
through 150° and is then in the position OP,; measuring a distance 3
along it we arrive at P,.

2—2
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(iii) For the third point, let the radius vector revolve from OX
through 45° into the position OL. We have now to measure along
OL a distance — 2, i.e. we have to measure a distance 2 not along OL
but in the opposite direction. Producing LO to P;, so that OP, is
2 units of length, we have the required point Pj.

(iv) To get the fourth point, we let the radius vector rotate from
OX through 330° into the position OM and measure on it a distance
-3, i.e. 3 in the direction MO produced. We thus have the point P,
which is the same a8 the point given by (ii).

(v) If the radius vector rotate through -210° it will be in the
position OP,, and the point required is P,.

(vi) For the sixth point, the radius vector, after rotating through
—30°, is in the position OM. We then measure — 8 along it, i.e. 3 in
the direction MO produced, and onoce more arrive at the point P,.

_ 32. It will be observed that in the previous example
the same point P, is denoted by each of the four sets of
polar coordinates .

(8, 150°%), (-3, 330°), (3, —210°) and (-3, —30°).

In general it will be found that the same point is given
by each of the polar coordinates
(7, 6), (-1, 180° + 0), {r, — (360° — 0)} and {—r, —(180° - 0)},
or, expressing the angles in radians, by each of the co-
ordinates

(r, 0), (-7, w+86), {r, —(2xr-0)} and {—r, — (v -0)}.

It is also clear that adding 360° (or any multiple of
360°) to the vectorial angle does not alter the final position
of the revolving line, so that (r, ) is always the same point
as (r, 0 +n.360°), where n is an integer.

So, adding 180° or any odd multiple of 180° to the
vectorial angle and changing the sign of the radius vector
gives the same point as before. Thus the point

[-7 6+ (2n+1)180°]
is the same point as [— 7, 6 + 180°], t.e. is the point [r, 6].

33. 7o find the length of the straight line joining two
points whose polar coordinates are given.
Let A and B be the two points and let their polar
coordinates be (r,, 6,) and (r,, 6,) respectively, so that
OA=r, OB=r,, t X04=6,, and L XOB=0,.
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Then (T'rigonometry, Art. 164)
AB*=0A4*+ 0B*—204.0B cos AOB
=1+ 72— 2ryr, cos (6, - 6,).

84. To find the area of & triangle the coordinates of
whose angular points are given.

Let ABC be the triangle and let (r,, 6,), (r;, 0,), and
(7s, 05) be the polar coordinates of
its angular points. v c

‘We have

AABC=A0BC+A00CA 8
—-AOBA ... (1). A
Now
AOBC=30B. 0C sin BOC
.[Trigmomtry, Art. 198] o X
= 4ryry8in (65— 6,).

So A0C4=30C.04sin COA = }ryr sin (6, -6;),

and AOAB=304.0Bsin AOB=}ryr,sin (6, - 6,)
=—4rry8in (6,-6,).
Hence (1) gives
AABC =} [ryrysin (6, - 6,) + ryr, gin (6, — 6,)
+7y7y8in (6, - 6,)]

85. To change from Cartesian Coordinates to Polar
Coordinates, and conversely. ——

Let P be any point whose Cartesian coordinates, referred
to rectangular axes, are  and y,

and whose polar coordinates, re- Y
ferred to O as pole and OX as
initial line, ave (r, 6).
Draw PM perpendicular to OX P
so that we have 7 y
OM=x, MP=y, . MOP=6, J
and OP=r. X' o x M X
From the triangle MOP we Y’
have :
x=0M=0P cos MOP=rcosf ......... 1),
y=MP=0Psin MOP =rsinf......... (2),

r=0P=NOM*+ MPP =N +3* ...... 3),

U NRARE-



/

22 COORDINATE GEOMETRY.

and

MP
tanf=7 =¥ (4).

Equations (1) and (2) express the Cartesian coordinates
in terms of the polar coordinates.

Equations (3) and (4) express the polar in terms of the
Cartesian coordinates.

The same relations will be found to hold if P be in any

other of the quadrants into which the plane is divided by
XO0X' and YOY'.

Bx. Change to Cartesian coordinates the equations

(1) r=asin b, and (2) r‘:a‘cosg.
(1) Multiplying the equation by 7, it becomes r2=ar sin 6,
i.e. by equations (2) and (3), 22 +y2?*=ay.

(2) Squaring the equation (2), it becomes

r=a oos’ L =3 (l+ms 6),

e 2r2=ar+arcos b,
ie. 2(22+yY) =a /B + P +az,
i.e. (222 + 2y? - az)?=a3 (23 +y2).

EXAMPLES. IIIL

N

Lay down the positions of the points whose polar coordinates are
1. (3, 45°). 2. (-2, -60°. 3. (4,185°. 4. (2, 330°).

5. (-1, -1809. 6. (1, -210°. 7. (5, 6759 8. (a, )

. (2.-3)- 10. (- 3)- 1. (-2 -5).

Find the lengths of the straight lines joining the pairs of points
whose polar coordinates are

/ 12. (2, 30°) and (4, 130°). 13. (-3, 45°) and (7, 105°).

14. a,:—: and 3a,—‘,f; .
(o) e ()
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/15. Prove that the points (0, 0), (3. g) , and (8, %) form an equi-

lateral triangle.

Find the areas of the triangles the coordinates of whose angular
points are
16. (1, 80°), (2, 60°), and (3, 90°). )

17. (-3, —80°), (5, 150°), and (7, 210°).

18. (—a, ’(—;), (a, %),and (-2.:,-";—' .

Find the polar coordinates (drawing the figure in each ease) of the
points

19. z=4/8, y=1." 20, z=-,/8, y=1. 21, z=-1, y=1.

Find the Cartesian coordinates (drawing a figure in each case) of
the points whose polar coordinates are

22, (5. %) . 23, (: 5, ’—;) . s (5, - ’-4') .
Change to-_golar coordinates the equations )

25. 224 yi=ak-- 26. y=ztana. 27. o*+y'=2az.

28. 2*-y3=2ay. 29. z*=y%?(2a-z). 30. (2*+y?)*=a?(2*-y9.
Transform to Cartesian coordinates the equations T

31. r=a. 8%, 6=tan—lm. /33 r=a eos 0.
/ 34. r=asin 26. 35. r*=a?cos 26. 36. r28in 20=2a%.
37. r2cos 20=a?. 38. #oos%:a*. 39. r*=aising.
40. 7 (cos 30 +sin 30) =5k sin 6 cos 6. /
' e d

P
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CHAPTER IIIL
LOCUS. EQUATION TO A LOCUS.

86. WHEN a point moves so as always to satisfy a
given condition, or conditions, the path it traces out is
called its Locus under these conditions. .

For example, suppose O to be a given point in the plane
of the paper and that a point P is to move on the paper so
that its distance from O shall be constant and equal to a.
It is clear that all the positions of the moving point must
lie on the circumference of a circle whose centre is O and
whose radius is @. The circumference of this circle is
therefore the ¢ Locus” of P when it moves subject to the
condition that its distance from O shall be equal to the
constant distance a.

37. Again, suppose 4 and B to be two fixed points in
the plane of the paper and that a point 2P is to move in
the plane of the paper so that its distances from 4 and B
are to be always equal. If we bisect 4B in C and through
it draw a straight line (of infinite length in both directions)
perpendicular to 4B, then any point on this straight line
is at equal distances from A and B. Also there is no
point, whose distances from 4 and B are the same, which
does not lie on this straight line. This straight line is
therefore the ¢“Locus” of P subject to the assumed con-
dition.

38. Again, suppose 4 and B to be two fixed points
and that the point P is to move in the plane of the paper
so that the angle APB is always a right angle. If we
describe a circle on AB as diameter then P may be any
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point on the circumference of this circle, since the angle
in a semi-<irgle is a right angle; also it could easily be
shewn that APB is not a right angle except when P lies
on this circumference. The “Locus” of P under the
assumed condition is therefore a circle on 4.8 as diameter.

39. One single equation between two unknown quan-
tities « and ¥, e.g.

z+y=l. (1),
cannot completely determine the values of « and y.
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Such an equation has an infinite number of solutions.
Amongst them are the following :

x=0,} z=1) 2= 2,) =z= 3,
y:l ’ y:o}, y:—l}’ ."/:—-2}’.“

w=-1, m=—2,}
gt W 1 W

Let us mark down on paper a number of points whose
coordinates (as defined in the last chapter) satisfy equation

(1).

Let OX and OY be the axes of coordinates.

If we mark off a distance OP, (=1) along 0Y, we have
a point P, whose coordinates (0, 1) clearly satisfy equation
().

If we mark off a distance OP,(=1) along 0X, we have
a point P, whose coordinates (1, 0) satisfy (1).
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Similarly the point P, (2, —1), and P,, (3, —2), satisfy
the equation (1). .

Again, the coordinates (- 1, 2) of P; and the coordinates
(— 2, 3) of P, satisfy equation (1).

On making the measurements carefully we should find

that all the points we obtain lie on the line P P, (produced
both ways).

Again, if we took any point @, lying on P P,, and draw
a perpendicular @3 to 0X, we should find on measurement
that the sum of its = and y (each taken with its proper
sign) would be equal to unity, so that the coordinates of @
would satisfy (1).

Also we should find no point, whose coordinates satisfy
(1), which does not lie on P, F,.

All the points, lying on the straight line P,P,, and no
others are therefore such that their coordinates satisfy the
equation (1).

This result is expressed in the language of Analytical

Geometry by saying that (1) is the Equation to the Straight
Line P,P,.

40. Consider again the equation

Amongst an infinite number of solutions of this equa-
tion are the following:

w=2,}’ x= J3}’ m=~/2}, x=1 },

y=0 y=1 y=2 y=a3
z=0 z=-1, z=—,/2, r=—,/3,
3/=2}’ y=J3}’ y=\2 } y=1 }
z=-2) =x=-—,/3, x=-,/2, r=—1, :
y=0 }’ y=-1 }’ y=—J2}’ y=- 3}’

x=0, z=1, z=,/2, x=,/3)
y=—2}’ y=-43J’ y=—J2}’md y=-1§"
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All these points are respectively represented by the
points P,, P,, P, ... P, and they
will all be found to lie on the B.Y
dotted circle whose centre is O p & -8 rig
and radius is 2 B 7 \

Also, if we take any other ¢ iR
point Q on this circle and its | S
ordinate QA it follows, since B: 0O M
OM* + MQ*=0@Q*=4, that the = B
and y of the point @ satisfies (1). %o e

The dotted circle therefore R '
passes through all the points whose Ra
coordinates satisfy (1).

In the language of Analytical Geometry the equation
(1) is therefore the equation to the above circle.

41. As another example let us trace the locus of the
point whose coordinates satisfy the equation

Yi=deo . (1).

If we give  a negative valuo we seo that y in im
possible ; for the square of a
real quantity cannot be nega- vy -
tive. R

‘We see therefore that there P R
are no points lying to the left R/
of OY.

If we give x any positive
value we see that y has two
real corresponding values which
are equal and of opposite signs,

The following  values,
amongst an infinite number of
others, satisfy (1), viz.

x=0) =z=1, =2,

y:O}’ y=+2or—2}’ y=2J2or—2J2}'
x=4 x=16, T=+00,
y:+4or—-4}’ y=80r~8}’ Ty 4o or—w}'

The origin is the first of these points and P, and (,,
P, and @,, Pyand @, ... represent the next pairs of pointa,
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If we took a large number of values of x and the
corresponding values of y, the points thus obtained would
be found all to lie on the curve in the figure.

Both of its branches would be found to stretch away to
infinity towards the right of the figure.

Also, if we took any point on this curve and measured
with sufficient accuracy its  and y the values thus obtained
would be found to satisfy equation (1).

Also we should not be able to find any point, not lying
on the curve, whose coordinates would satisfy (1).

In the language of Analytical Geometry the equation
(1) is the equation to the above curve. This curve is called
a Parabola and will be fully discussed in Chapter X.

42. If a point move so as to satisfy any given condition
it will describe some definite curve, or locus, and there can
always be found an equation between the x and y of any
point on the path.

This equation is called the equation to the locus or
curve. Hence

Def. Equation to a curve. The equation to a
curve is the relation which exists between the coordinates of
any point on the curve, and which holds for no other points
except those lying on the curve.

43. Conversely to every equation between z and y it
will be found that there is, in general, a definite geometrical
locus.

Thus in Art. 39 the equation is x+y=1, and the
definite path, or locus, is the straight line PP, (produced
indefinitely both ways).

In Art. 40 the equation is ®+ y*=4, and the definite
path, or locus, is the dotted circle.

Again the equation y =1 states that the moving point
is such that its ordinate is always unity, d.e. that it is
always at a distance 1 from the axis of . The definite
path, or locus, is therefore a straight line parallel to OX
and at a distance unity from it.
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44. In the next chapter it will be found that if the
equation be of the first degree (i.e. if it contain no
products, squares, or higher powers of x and y) the locus
corresponding is always a straight line.

If the equation be of the second or higher degree, the
corresponding locus is, in general, a curved line.

45. We append a few simple examples of the forma-
tion of the equation to a locus.

Bx. 1. A point moves so that the algebraic sum of its distances
Jrom two given perpendicular azes is equal to a constant quantity a;
Jind the equation to its locus.

Take the two straight lines as the axes of coordinates. Let (z, y)
be any point satisfying the given condition. We then havez+y=a.

This being the relation connecting the coordinates of any point
on the locus 18 the equation to the locus.

It will be found in the next chapter that this equation represents
a straight line.

Bx. 2. The sum of the squares of the distances of a moving point
from the two fized points (a, 0) and (—a, 0) is equal to a constunt
quantity 2¢2.  Find the equation to its locus.

Let (z, y) be any position of the moving point. Then, by Art. 20,
the condition of the question gives

{(x—a)?+9?} + {(z +a)® + y?} =2¢%
i.e. 2+yl=c-a’

This being the relation between the coordinates of any, and every,
point that satisfies the given condition is, by Art. 42, the equation to
the required locus.

This equation tells us that the square of the distance of the point
(x, y) from the origin is constant and equal to c2- a? and therefore
the locus of the point is a circle whose centre is the origin.

Bx. 8. A point moves so that its distance from the point (-1, 0)
is always three times its distance from the point (0, 2).

Let (z, y) be any point which satisfies the given condition. We
then have

Ve +1f+ [y -02=3/(z - 0)*+ (¥ - 2)*,
8o that, on squaring,

22422+ 1+92=9 (22432 -4y +4),
. 8 (z®+y3) - 2z - 36y +85=0.

This being the relation between the coordinates of each, and
every, point that satisfies the given relation is, by Art. 42, the
required equation.

It will be found, in a later chapter, that this equation represents
a circle.

i.e
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EXAMPLES. IV.

By taking a number of solutions, as in Arts. 39—41, sketch
the locl of the following equations :

1. 2z+3y=10. 2 4z-y=T. - 3. -2az+y*=0.
4, 22— 4az+y +3a2=0. /5, y’=z. 6. 3z=y’—9.
7 z2+’L--l
479 7

4 and B being the fixed points (a, 0) and (-a, 0) respectively,
obtnn the equations giving the locus of P, when

PA? - PB*=a constant quantity =242
/ 9. PA=nPB, n being constant.
10 P4 +PB=c, a constant quantity.
4 11 PB4+ PC3=2P43, C being the point (c, 0).
Find the locus of a point whose distance from the point (1, 2)
\?m equal to its distance from the axis of v.
) PFind the equation to the locus of a point which is always equi-
(:) distant from the points whose coordinates are
/13, (1,0) and (0, -2). ~14. (2,3) and (4, 5).
Y 15 (a+d,a-d) and (a-b, a+b).
\ Find the equation to the locus of a point which moves so that
16. its distance from the axis of z is three times its distance from
the axis of y.
17. its distance from the point (a, 0) is always four times its dis-
tance from the axis of y.

18. the sum of the squares of its distances from the axes is equal

43.
B 19, the square of its distance from the point (0, 2) is equal to 4.
20. its distance from the point (3, 0) is three times its distance
from (0, 2).
21, its distance from the axis of z is always one half its distance
“~~~from the origin.

7 22. A-fixed point is at a perpendwnlar distance a from a fixed
straight line and a point moves so that its distance from the fixed
point is always equal to its distance from the fixed line. Find the
equation to its locus, the axes of coordinates being drawn through
t!xe fixed point and being parallel and perpendicular to the given

23 In the previous question if the first distance be (1), always half,
/a.nd (2), always twice, the second distance, find the equations to the
respective loci,



CHAPTER 1V.

THE STRAIGHT LINE. RECTANGULAR COORDINATES.

46. 7o ﬁml the equation to a straight line which s
parallel

Let CZT)?a_n'yﬁé pamllel to the axis of y and passing
through a point C on the axis of « such that OC =c.

Let P be any point on this line whose coordinates are
x and y.

Then the abscissa of the point P is vy L
always ¢, so that :

B=Coovrrrrrnnnnnn, (1).

This being true for every point on o -~ [c x
the line CL (produced indefinitely both
ways), and for no other point, is, by
Art. 42, the equation to the line.

It will be noted that-the-equation-dees not contain the
coordinate y. -
Similarly the equation to a straight line parallel to the
axis of « is y,=,d.

-

Cor. The equation to the axis of x is y=0.
The equation to the axis of y is x=0.

47. To find the equation to a straight line which cuts
off a given intercept on the axis of y and is inclined at o
gtven angle to the axis of .

Let the given intercept be ¢ and let the given angle be a.

P



32 COORDINATE GEOMETRY.

Let C be a point on the axis of y such that OC is <
Through C draw a straight
line LCL'inclined at an angle
a (=tan™1m) to the axis of -,
so that tan a=m.

The straight line LCL' is
therefore the straight line
required, and we have to
find the relation between thc
coordinates of any point P lying on it.

Draw PMY perpendicular to OX to meet in & a line
through C parallel to 0X.

Let the coordinates of P be z and y, so that OJ/ ==
and MP=y. .

Then MP=NP+ MN=CNtana+O0C=m.x+c,

e y=mx+cC.

This relation being true for amy point on the given
straight line is, by Art. 42, the equation to the straight
line.

[In this, and other similar cases, it could be shewn,
conversely, that the equation is only true for points lying
on the given straight line.]

Cor. The equation to any straight line passing through
the origin, t.e. which cuts off a zero intercept from the axis
of y, is found by putting ¢=0 and hence is y =ma.

48. The angle o which is used in the previous article is the
angle through which a straight line, originally parallel to OX, would
have to turn in order to coincide with the given direction, the rotation
being always in the positive direction. Also m is alwgys the tangent
of this angle. In the case of such a straight line as 4B, in the figure

of Art. 50, m is equal to the tangent of the angle XAP gnot of the -

angle P4 O) In this case therefore m, being the tangent of an obtuse
angle, is a negative quantity.

The student should verify the truth of the equation of the last
article for all points on the straight line LCL', and also for straight
lines in other positions, e.g. for such a strmght line as 4,B, in the
figure of Art. 59. In this latter case both m and ¢ are negative
quantities.

A careful consideration of all the possible cases of a few proposi-
tions will soon satisfy him that this verification is not always
necessary, but that it is sufficient to consider the standard figure.
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49. Bx. The equation to the ight line ontt‘i:g off an
intercept 3 from the negative direction of axis of y, inclined
at 120° to the axis of z, is

y=ztan 120°+(-8),
i.e. y=-2,/8-38,
i.e. y+2,/8+3=0.

B80. To find the equation to the straight line which cuts
off given intercepts a and b from the axes.

Let 4 and B be on OX and OY respectively, and be
such that 04 =a and OB =b.

Join AB and produce it in-
definitely both ways. Let P be
any point (2, y) on this straight
line, and draw PM perpendicular
to 0X.

‘We require the relation that
always holds between x and y, so

long as P, lies on 4B.
@I.Lwehave
OM PB dMI’ AP
04 ~ 4B’ *"° OB~ 4B"
. Ol{ MP PB+AP_1
" 04Y0B-__4B

B
. x y_
t.6. <E+BT .

This is therefore the requi , equation; for it is the
relation that holds between the coordinates of any point
lying on the given straight line.

81. The equation in the preceding article may be also obtained

by expressmg the fact that the sum of the areas of the triangles OPA
and OPB is equal to 04B, so that

taxy+idxz=3axd,
and hence Ty¥on
a b
82. Bx. 1. Find the equation to the straight line passing
through the point (8, —4) and cutting off intercepts, equal dut of
opposite signs, from the two axes.

" Let the intercepts cut off from the two axes be of lengths a and
-

QM A X

L. . 3
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The equation to the straight line is then
z + ¥ =1,
a -a
ie, B=Y=qurrererrrererrnrienirnennncsenes (1).

Since, in addition, the straight line is to go through the point
(8, - 4), these coordinates must satisfy (1), so

8-(-4)=a,
and therefore a=T.
\ . The required equation is therefore
N d¥ z-y="1.

Bx. 2. Find the equation to the straight line which passes through
the point (- 5, 4) and is such that the portzon of it between the axes is
divided by the point in the ratio of 1 :

Let the required straight line be ;+%=l. This meets the axes
in the points whose coordinates are (a, 0) and (0, b).

The coordinates of the point dividing the line joining these

points in the ratio 1 : 2, are (Art. 22)
2.a+1.0 2.0+1.b5 . 2a
271 and 33l ey

If this be the point ( - 5, 4) we have

—5=2—nl and 4=§b,

b
and 3

3
8o that a= -3¢ and b=12.
The required straight line is therefore
z y_
gt 1a=h
i.e. 5y —8x=60.

B3. To find the equation to a straight line in terms of
the perpendicular let fall upon it from the origin and the
angle that this perpendicular makes with the axis of x.

Let OR be the perpendicular from O and let its length
be p.

Let a be the angle that OR makes p
with OX.

Let P be any point, whose co-
ordinates are « and y, lying on 43B;
draw the ordinate PM, and also ML
perpendicular to OR and PN perpen-
dicular to ML,
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Then OL=0Mco8a ..................... (1),
and LR=NP=MPsin NMP.
But . NMP=90°-.NMO=.MOL=a
LR=MPsina..................... @).

Hence, adding (1) and (2), we have
OM cosa+ MPsina=0OL+ LR=0R=p, -~

s.c. xcosa+ysina=p. f Nl/l,(
This is the required equation.

54. In Arts 47—b53 we have found that the correspond-
ing equations are only of the first degree in « and y. We
shall now prove that

Any equation of the first degree in x and y always repre-
sents a straight line.

For the most general form of such an equation is

Az + By+C=0...cceevininnnn. .o (1),
where 4, B, and C are constants, i.e. quantities which do -
not contain x and y and which remain the same for all
points on the locus.

Let (1, %), (%2, s), and (@3, 95) be any three points on
the locus of the equation (1).

Since the point (x;, ¥,) lies on the locus, its coordinates
when substituted for « and y in (1) must satisfy it.

Hence Az, + By, +C=0 ...ccvvevnnnnn.n. 2).
So Az + By, + C=0 ..ocennanenen.n. (3),
and Awxy+ Byy+ C=0 .................. (4).

Since these three equations hold between the three quanti-
ties 4, B, and C, we can, as in Art. 12, eliminate them.

The result is

xy Y, 1
Ty Yy 1|=0.ciiiiiiiiiin ().
X3y Y 1

But, by Art. 25, the relation (5) states that the area of the
triangle whose vertices are (z,, 9,), (2, $s)» and (zs, 9,) is
zero.

Also these are any three points on the locus.
3—2
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The locus must therefore be a straight line ; for a curved
line could not be such that the triangle obtained by joining
any three points on it should be zero.

88. The proposition of the preceding article may also be deduced
from Art. 47. For the equation

Az +By+C=0
may be written y=—-‘—4-:r:——(Z
B~ B’
and this is the same as the straight line
y=mz+c,
if m=-% and cz—%.

But in Art. 47 it was shewn that y=mz+c was the equation to

a straight line cutting off an intercept ¢ from the axis of y and
inclined at an angle tan—m to the“lk oz,

The equation Az + By+C=0
therefore represents a straight line cutting off an intercept —1(—; from

" the axis of y and inclined at an angle tan—! (- %) to the axis of z.

86. We can reduce the general equation of the first
degree Az +By+C=0.......... SN 1)
to the form of Art. 53.

For, if p be the perpendicular from the origin on &)
and a the angle it makes with the axis, the equation to the
straight line must be

zcosa+ysina—p=0.............. 2).
This equation must therefore be the same as (1).

Hence T = F -7
ie p_cosa_sina Acos® a + sin’ a 1
CCT AT B Jrsm (VA B
Hence

-4 . - B C
cosa= =

N7y sy Sk 7 oy
The equation (1) may therefore be reduced to the form (2)
by dividing it by «/4%+ B* and arranging it so that the
constant term is negative.

—_—— -

e — et
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87. Bx. Reduce to the perpendicular form the equation

ZHYNBHT=0u s Q).
Hero N B= J1+8=/4=2.
Dividing (1) by 2, we have

bty 4y=0,

i.e. x(—§)+y(-'-‘4£)—;=0,
i.e. z cos 240° +y sin 240° - [ =0,

88. T trace the straight line given by an equation of'
the first degree.
Let the equation be
Az +By+C=0..................... (1).

(«) This can be written in the form
o °
“orIot
4 B

Comparing this with the result of Art. 50, we see that it

represents a straight line which cuts off intercepts -g and

—-% from the axes. Its position is therefore known.
If C be zero, the equation (1) reduces to the form

y==3%

and thus (by Art. 47, Cor.) represents a straight line
passing through the origin inclined at an angle tan™ (— —)

to the axis of z. Its position is therefore known.
(B) The straight line may also be traced by fmding
the coordinates of any two points on it.

If we put y=0 in (1) we have x:—g. The point

(—g , 0) therefore lies on it.
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If we put =0, we have y=—%, so that the point

(0 —g) lies on it.

Hence, as before, we have the position of the straight
line.
69. Bx. Trace the straight lines
(1) 3z-4y+7=0; (2) Tz+8y+9=0;
(3) 8y=z; (4) z=2; (5) y=-2.

Yl
8 (4)

) ¢,

(3

XA, A 0 Ae X
’ B

(1) Puiting y=0, we have z= -, .
and putting z=0, we have y=1.

Measuring 04, (= - ) along the axis of z we have one point on
the line.

Measuring OB, (=1) along the axie of y we have another point.
Hence 4,B,, produced both ways, is the required line.

(2) Putting in succession y and z equal to zero, we have the
intercepts on the axes equal to — § and - §.

If then 04,= -$ and OB,= -}, we have 4,B, the required line.

(3) The point (0, 0) satisfies the equation so that the origin is on
the line.

Algo the point (3, 1), i.e. Cy, lies on it. The required line is
therefore OC;.

(4) Theline x=2 is, by Art. 46, parallel to the axis of y and passes
through the point 4, on the axis of z such that 04,=2.

(5) The line y= - 2 is parallel to the axis of z and passes through
the point By on tgxe axis of y, such that OB;= -2.

60. Straight Line at Infinity. We have seen
that the equation 4« + By + C =0 represents a straight line
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which cuts off intercepts -g and —% from the axes of
coordinates.

If A vanish, but not B or C, the intercept on the axis
of «is infinitely great. The equation of the straight line

then reduces to the form y=constant, and hence, as in
Art. 46, represents a straight line parallel to Ox.

So if B vanish, but not 4 or C, the straight line meets
the axis of y at an infinite distance and is therefore parallel
to it.

If 4 and B both vanish, but not C, these two in-
tercepts are both infinite and therefore the straight line
0.2+0.y+ C=0 is altogether at infinity.

61. The multiplication of an equation by a constant
does not alter it. Thus the equations
2x-3y+5=0 and 10z-15y+26=0
represent the same straight line.

Conversely, if two equations of the first degree repre-
sent the same straight line, one equation must be equal to
the other multiplied by a constant quantity, so that the
ratios of the corresponding coefficients must be the same.

For example, if the equations
a,x+by+e¢=0 and 4,z + Biy+C,=0
represent the same straight line, we must have’

62. To find the equation to the straight line which
passes through the two given points (¥, y') and (z”, y”).
By Art. 47, the equation to any straight line is

- By properly determining the quantities m and ¢ we can

make (1) represent any straight line we please.
If (1) pass through the point (z', ), we have

Substituting for ¢ from (2), the equation (1) becomes
V=Y =m@X-=X).....coooernnnen 3).



40 COORDINATE GEOMETRY.

This is the equation to the line going through (z’, ') making
an angle tan~!m with OX. If in addition (3) passes through
the point (2", "), then

—y’=m(x”—m’),

giving m= Zu : Z .

Substituting this value in (3), we get as the required
equation

L y-y=L=L "y(x—!’)

638. Bx. Find the equation to the straight line which passes
through the points (-1, 3) and (4, —2).
Let the required equation be
YSMEBFCrenerrnnnernnrinnnnnnernnnnennns (1.
Since (1) goes through the first point, we have
3=-m+c, 8o that c=m+3.
Hence (1) becomes
Y=MEFMEBoeneeniiiniinnniiniiiiniens (2).
If in addition the line goes through the second point, we have
—-2=4m+m+38, so that m=—1.
Hence (2) becomes
y=-z+2, i.e. z+y=2.
Or, again, using the result of the last article the equation is

Yy-3=—0 )(z+l)._—-z 1,

4- ( 1
i.e. y+z=2,

64. To fix definitely the position of a straight line we
must have always two quantities given. Thus one point
on the straight line and the direction of the straight line
will determine it; or again two points lying on the straight
line will determine it.

Analytically, the general equation to a straight line
will contain two arbitrary constants, which will have to be
determined so that the general equation may represent any
particular straight line.

Thus, in Art. 47, the quantities m and ¢ which remain
the same, so long as we are considering the same straight
line, are the two constants for the straight line.
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Similarly, in Art. 50, the quantities & and b are the
constants for the straight line.

65. In any equation to a locus the quantities x and y,
which are the coordinates of any point on the locus, are
called Current Coordinates ; the curve may be conceived as
traced out by a point which “runs” along the locus.

EXAMPLES. V.

Find the equation to the straight line

1. cutting off an intercept unity from the positive direction of the,
axis of y and inclined at 45° to the axis of z. ’
_~" 2. cutting off an intercept — 5 from the axis of y and being equally
inclined to the axes.

_~—8. cutting off an intercept 2 from the negative direction of the
axis of y and inclined at 30° to OX.

4. cutting off an intercept — 3 from the axis of y and inclined at
an angle tan=1 § to the axis of .

Find the equation to the straight line
5. cutting off intercepts 3 and 2 from the axes.
/6. cutting off intercepts — 5 and 6 from the axes.

7. Find the equation to the straight line which passes through the -
point (5, 6) and has intercepts on the axes
’ (1) equal in magnitude and both positive,

(2) equal in magRMOAs bt Opposite in sign.

8. Find the equations to the straight lines which pass through

the point (1, —2) and cut off equal distances from the two axes.

9. Find the equation to the straight line which passes through
the given point (2/, y') and is such that the given point bisects the
part intercepted between the axes.

10. Find the equation to the straight line which passes through
the point (-4, 8) and is such that the portion of it between the axes
is divided by the point in the ratio 5 : 3.

Trace the straight lines whose equations are

11. z+2y+38=0. 12, 5z-Ty-9=0.

13. 3z+7y=0. 14, 2z-3y+4=0.

Find the equations to the straight lines passing through the
following pairs of points.

15. (0, 0) and (2, -2). 16. (3, 4) and (5, 6).

7. (-1,3) and (6, - 7). 18. (0, —a) and (b, 0).

O 2N\
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19. (a,d) and (a+bd, a-d).
a a

20, (at?, 3at;) and (at, 2at). 3l (at,. t_l) and (-u,, i;)'

22. (acos ¢,, asin¢,) and (a cos ¢, a sin ¢,).

23. (aoco0s ¢,, bsin ¢,) and (a cos ¢,, bsin ¢,).

24. (asec ¢, btan ¢,) and (asec ¢y, b tan ¢,).

Find the equations to the sides of the triangles the coordinates of
whose angular points are respectively

25. (1, 4), (2, -8), and (-1, -2).

26. (0, 1), (2, 0), and (-1, -2).

27. Find the equations to the dingonsls of the rectangle the
equations of whose sides are z=a, x=a’, y=b, and y="".

28. Find the equation to the strmght line which blsecﬁ; the
distance between the points (a, b) and (a’, b) and also bisects the
distance between the points (- a, b) an (a, ~b).

29. Find the equations to the straight lines which go through the
origin and trisect the tglortlon of the straight line 3z+y=12 which
is intercepted between the axes of coordmntes.

Angles between ltralght lines.

66. To find the angle between two given straight lines.

Let the two straight lines be AL, and 4 L,, meeting the
axis of « in L, and L,.

L
t, ~L, o X
I Let their equations be
y=mx+c andly=m,a:+c,............(l).
By Art. 47 we therefore have
tan AL, X=m,, and tan AL, X =m,.

Now cLAL=c AL X1 ALX.
KN fan Z,AL, = tan [AL,X-AL,X)]
tan AL, X —tan AL, X m, —my

“T+tan AL, X. tan AL;X= T+mm,
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Hence the required angle =

tan-12—= 20 ) 2).
[In any numerical example,
tity it is the g heraAgrbe

0 e lines ; if n ve,

)~

II. Let the equations of the straight lines be
4,z+ B,y +C,=0,
and A,z + By +C,=0.
) By dividing the equations by B, and B, they may be
written

LA, G
- BT B’
_ 4, G
and __Ex_F,'

Comparing these with the equations of (I.), we see that

4
m,=—Fi, and m,=-32.

Hence the required angle
A (4
= - Th T -1 B, B,
1 +ﬂh’l’n,_ A‘ A’
1+(-35) (-3
B,4,- 4,8,
=tan-1-1-2 “1°2
=tan A4, 7 BB, (3)-

III. If the equations be given in the form
xcosa+ysina—p, =0 and zcosB+ysinf—p,=0,
the perpendiculars from the origin make angles o« and

with the axis of «.

Now that angle between two straight lines, in which
the origin lies, is the supplement of the angle between the
perpendiculars, and the angle between these perpendiculars
is B—a.

[For, if OR, and OR, be the perpendiculars from the origin upon
the two lines, then the points O, R,, R,, and 4 lie on a circle, and
hence the angles R,0R, and R,4 R, are either equal or supplementary.)
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Hr 7. To find the condition that two straight lines may
be parallel.

Two straight lines are parallel when the angle between
them is zero and therefore the tangent of this angle is zero.

The equation (2) of the last article then gives /),
m; =mg. V/v?('\}/,l'l
Two straight lines whose equations ‘are given’in the
“m” form are therefore parallel when their “m’s” are the
same, or, in other words, if their equations differ only in
the constant term.
The straight line Az+ By + C'=0 is any straight line which is

parallel to the straight line Az+By+C=0. For the “m's” of the
two equations are the same.

Again the equation 4 (z-z')+B(y-y')=0 clearly represents the
straight line which passes through the point (2, ') and is parallel to
Az +By+ C=0.
The result (3) of the last article gives, as the condition
for parallel lines,

. BA,—A,B,=0,
. 4, 4,
.e. w .B| = B:‘ .

68. Bx. Find the equation to the straight line, which passes
through the point (4, —b5), and which is parallel to the straight line

8244y +5=0..ccccuverriiiriniiiicnnnnn. 1).
Any straight line which is parallel to (1) has its equation of the
form
Bz 44y +C=0..ccueeerurirrurririeinneens 2).

[For the ‘“m” of both (1) and (2) is the same.]
This straight line will pass through the point (4, - 5) if
3x4+4x(-5)+C=0, :

t.e. if C=20—.12=8.
/'.l'he eqnatit\)n (2) then becomes
A;, / .wij 53 8z +4y +8=0.

- 69. To find the condition that two straight lines, whose
equations are given, may be perpendicular.
Let the straight lines be
Yy=mzx+c,
and Y =myx+c,.
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If 6 be the angle between them we have, by Art. 66,
tanf= 0 ).
If the lines be perpendicular, then 6=90°, and therefore
tanf=o.

The right-hand member of equation (1) must therefore
be infinite, and this can only happen when its denominator
is zero.

The condition of perpendicularity is therefore that

1+mm,;=0, ie. mme=~1.

The straight line y = m,x + ¢, is therefore perpendicular

to y=m,x+¢, if my=—

It follows that the straight lines
Adx+By+C =0 and 4,2+ By + C,=0,

for which m:—% and m,=—4—’, are at right angles if
1 3
AI 4, =
(-3) C5)--»
t.e. if 4 4,+ B B,=0.

/f/’!/L 70. From the preceding article it follows that the two
straight lines

Az+By+C,=0............ 1),
and Bae—Ay+Cy=0.cceniini. (2),
are at right angles ; for the product of their m’s

_AB

T B4, 7

Also (2) is derived from (1) by interchanging the coefficients
of « and y, changing the sign of one of them, and changing
the constant into any other constant.

‘Bx. The straight line through («, ') perpendicular to (1) is (2)
where By — Ay’ + C;3=0, 8o that C,=4,y’ - B\z'.
This straight line is therefore
B, (z-) - 4, (y ) =0.
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71. Bx. 1. Find the equation to the straight line whick passes
through the point (4, — b5) and is perpendicular to the straight line

8244y +5=0...cucuuerrvrrinirininninnnnn. (1).
First Method. Any straight line perpendicular to (1) is by the
last article -
42-8Y+C=0..coorevrerrreerreerrenes @).

[We should expect an arbitrary constant in (2) because there are
an infinite number of straight lines perpendicular fo (1).]
The straight line (2) passes through the point (4, - 5) if
4x4-38x(-5)+C=0, ‘

i.e. if C=-16-16= -31,
The required equation is therefore
4z - 8y=31.

Second Method. Any straight line passing through the given

point is
y-(-5)=m(z-4).
~Thislstraight line is perpendicular to (1) if the product of their
mgis -1,

ie. if mx(-§=-1,
e if ’ : m=4%.
The required equation is therefore
Yy +5=4%(z~-4),
ie. 4o - 8y=31.
Third Method. Any straight line is y=mz+c. It passes through
the point (4, - 5), if
B4R o ().
It is perpendicular to (1) if
MX(=F)=-Lociiiiiiriiiiies s (4).

Hence m=4 and then (3) gives c=-3.

The required equation is therefore y =4z - 32,
i.e. : 4z - 3y=31.

[n the first method, we start with any straight line which is

dicular to the given straight line and pick out that particular
straight line which goes through the given point.

In the second method, we start with any straight line passing
through the given point and pick out that particular one which is
perpendicular to the given straight line.

In the third method, we start with any straight line whatever and
determine its oonstants, so that it may satisfy the two given
conditions.

The student should illustrate by figures, ]

Bx. 2. Find the equation to the straight line which passes through
the point («', y’) and is perpendicular to the given straight line

yy'=2a (z+2').

e R e —
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The given straight line is
¥y’ - %az - 20z’ =0,
Any straight line perpendicular to it is (Art. 70)
2ay+2y’ +C=0......ccc00tvruricrrnnnnn. 1.

This will pass through the point (/, y) and therefore will be the
straight line required if the coordinates =’ and y’ satisfy it,
ie. if 2ay’ +2'y’ + C=0,

e if C=-2ay' -2y'.

Substituting in (1) for C the required equation is therefore

el - tal-y)+y (e-5)=0.

72. 7o find the equations to the straight lines which
pass through a given pownt (', y') and make a given angle a
with the given straight line y =mx + c.

Let P be the given point and let the given straight line
be LMN, making an angle 6
with the axis of « such that

tan 0 =m.

In general (i.e. except when
a is a right angle or zero) there
. are two straight lines PH¥ R and
PNS making an angle a with
the given line.

Let these lines meet the axis of « in R and § and let
them make angles ¢ and ¢’ with the positive direction of
the axis of x.

The equations to the two required straight lines are
therefore (by Art. 62)

y-y=tanpx(@—a)....cc...eee.o... 1),
and y-y=tan¢' x (z—a).cc...o.oioini. (2).
Now ¢=LILMR+ (. RLM =a+0,
and ¢’ =L LNS+ L SLN=(180°—a) +6.
Hence e —

l—tanatand 1—mtana’

;‘1;m(a+0)= tana+tan 6 tana+m >

and { tan ¢’ =tan (180° + 6 — a) y
* : tanf—tana m-—tana ,,"/'/.'
\ﬁ.ﬁf‘(o_a)h T+tanftana T+mtana™ V>
~— R —— A""”// VR O
A )

& -
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On substituting these vatwesin{l) and (2), we have as
the required equations -
'y’— m+tana (@
Y T 1-mtana
m—tana (@
y-y'= l+mtana )
. ;/)
, EXAMPLES. VI
Find the angles between the pairs of straight lines
1. z-y\/3=5 and \/3z+y=1.
2. z-4y=8 and 6z-y=11. 8, y=3z+7 and 8y-z=8.
4, _y=(2-./8)z+5 and y=(2+4/3)2-T7.
//(m“—mn)y =(mn+n?) z+n® and (mn+m3)y=(mn - %) z+m?.
/‘ 6. Find the tangent of the angle between the lines whose inter-

_z,

/

and

cepts on the axes are respectively a, — b and b, —a.

7.. Prove that the points (2, —1), (0, 2), (2, 8), and (4, O) are the
" coordinates of the angular points of a parallelogram and find the
angle between its diagonals.

ipd the equation to the straight line

passing through the point (2, 3) and perpendicular to the
/stnnght line 4z - Sy=10

passing through the point (-6, 10) and perpendicular to the
émght line 7z+8y=>5.

A~
dQ\ passing through the point 782 -8) and perpendicular to the
§ strmght line joining the points (5, 7) and (-6, 3).

11. passing through the point (-4, — 8) and perpendicular to the
straight line )oimng (1, 8) and (2, 7).

12. Find the equstlon to the straight line drawn at right angles to
the straight lme - - Z__ 1 through the point where it meets the axis
of z.

13. Find the oquatxon to the straight line which bisects, and is

Pdmular to, the straight line joining the points (a, b) and

b)

14 Prove that the equation to the strmght line which passes

the point (acos®d, asin®f) and is perpendicular to the

h-u%t hnezsee0+yooseoo a i8 2 008 6 — y 8in 6 =a cos 26.

15. Find the equations to the straight lines passing through (<,

and respectively perpendicular to the straight lg: 9

zx' +yy'=ad,
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zz’ | yy
=t yb’ L
and 2y +zy’ =a’
16. Find the equations to the straight lines which divide, internally

and externally, the line joining (-8, 7) to (5, —4) in the ratio of 4 : 7
and which are perpendicular to lns line.

17. Through the point (3, 4) are drawn two t lines each
inclined at 45° to the straight line z —y=3. Find their equations
and find also the area included by the three lines.

18. Shew that the equations to the straight lines passing through
the point (3, — 2) and inclined at 60° to th‘e‘%.m
N3z+y=1 are y+2=0 and y-,/8z+2+38,/8=0.
19, Find the equations to the straight lines wlnoh pass through
the origin and are inclined at 75° to the straight lin
z+y+a/3(y -z)=a.
20. Find the equations to the straight lines which pass thro

the pomt (h, k) and are inclined at an angle tan—'m to the straight
y=mz+c.

21 Find the angle between the two straight lines 3z=4y+7 and
5y=12z+6 and also the equations to the two straight lines which
p.suthroughthepomt@ 5) and make equal angles with the two
given lines.

78. To shew that the point (2, y') 8 on one side or the :
other of the straight line Az+ By+C =0 according as the

quantity Az’ + By + C 18 positive or negative.

Let LM be the given straight line and P any point
«, ¥)-

Through P draw PQ, parallel to
the axis of y, to meet the given
straight line in @, and let the co-
ordinates of @ be (z, y").

Since @ lies on the given line, we
have

Ao + By” + C =0,
so that y'=- Az; G e (1).
It is clear from the figure that PQ is drawn parallel to
the positive or negative direction of the axis of y according
a8 P is on one side, or the other, of the straight line ZM,
t.e. according as ¥ is > or < ¥/,
t.e. according as y” — ¥ is positive or negative.

L. _ 4
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y -y =" =——[Aa:'+By+C]

. The point (', y’) is therefore on one side or the other of
LM according as the quantity A« + By + C is negative or
positive.

Cor. The point («, y) and the origin are on the same
side of the given line if 42’ + By'+Cand 4x0+Bx0+C
have the same signs, t.e. if 42’ + By + C has the same sign
as C.

If these two quantltles have opposite signs, then the
origin and the pomt (#', ¥') are on opposite sides of the
given line.

74. The condition that two points may lie on the
same or opposite sides of a given line may also be obtained
by considering the ratio in which the line joining the two
points is cut by the given line.

For let the equation to the given line be

Az +By+C=0.....cccoveininnnns (1),
and let the coordinates of the two given points be (x,, ¥,)
and (23, ¥,)-

The coordinates of the point which divides in the ratio
m, : m, the line joining these points are, by Art. 22,

Tyt M ppg T @)
my + My my +my

If this point lie on the given line we have

Pl Rl +Bm1%+mz.’/1+0 0,
my +my my +my
m, Az, + By, +C
so that e Azt By, + C
If the point_ (2) be between the two given points (z, y,)
and (z;, ), i.e. if these two points be on opposite sides of
the given line, the ratio m, : m, is positive.

In this case, by (3) the two quantities 4w, + By, +C
and Az, + By, + C have opposite signs.

The two points (x;, v,) and (x,, ¥,) therefore lie on the op-
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posite (or the same) sides of the straight line Az + By +C =0
according as the quantities Az, + By, + C and 4z, + By, + C
have opposite (or the same) signs.

Lengths of perpendiculars.

75. To find the length of the perpendicular let fall from
a given point upon & given straight line. A .

(i) Let the equation of the straight line be
zcosa+ysina—p=0............... (1),
so that, if p be the perpendicular on it, we have
ON=p and L XON=a. '
Let the given point P be («, ¥').
Through P draw PR parallel to the given line to meet
ON produced in R and draw PQ the required perpendicular.

If OR be p’, the equation to PR is, by Art. 53,
zcosa+ysina—p =0,
Since this passes through the pomt (a:’ , ¥'), we have
o cosa+y sina—p =0,
so that p'=a cosa+y'sina
But the required perpendicular
=PQ=NR=0OR-ON=p' -p
=x'cosa+y'sina=p................. (2).

The length of the reqmred perpendlculm' is therefore
obtained by substituting «’ and y’ for z and y in the given
equation.

(ii) Let the equation to the straight line be
Az + By+C=0...ccoueeuenvennn... (3),
the equatmn being written so that C is a negative quantity.

4—2
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As in Art. 56 this equation is reduced to the form (1)
by dividing it by ¥/ 4%+ B%. It then becomes
Ax By c
VA’+B“ VBB NBi B

Hence

A4 . Y
T e i

The perpendicular from the point (', ¥’) therefore

=a/cosa+y sina—p
—Ax +By' + C
JAT LB

The length of the perpendicular from (x, y) on (3) is
therefore obtained by substituting ' and g’ for x and y in
the left-hand member of (3), and dividing the result so

obtained by the square root of the sum of the squares of
the coefficients of « and y.
Cor. 1. The perpendicular from the origin
=C+J4*+ B

Cor. 2. The length of the perpendicular is, by Art. 73,
positive or negative according as («/, 3') is on one side or
the other of the given line.

76. The length of the perpendicular may also be
obtained as follows :

As in the figure of the last article let the straight line
meet the axes in L and M, so that

c ¢
OL= -1 and Ol{=—l-9.

Let PQ be the perpendicular from P (2, ') on the
given line and PS and PT the perpendiculars on the axes
of coordinates.

‘We then have

APML + AMOL=AO0OLP +AOPM,
i.e., since the area of a triangle is one half the product of
its base and perpendicular height,
PQ.LM+OL.OM=0L.PS+0M.PT.

cosa= , and




EXAMPLES, 53

But Lu=\/(-§)'+ (-3 AR o)

since C is a negative quantity.

Hence
A\/A +.B‘ c , C ’
PRx —p—x(-0)+ A B Z"-"*(‘B)"”’
so that PQ:‘%%”_F"'Q

EXAMPLES. VII

Find the length of the perpendicular drawn from

1. the point (4, 5) upon the straight line 3z+4y=10.

9, the origin upon the straight line % - %:l.

3. the point (-3, - 4) upon the straight line
12(z+6)=5(y-2).

4, the point (b, a) upon the straight line ’-’ - %=1.

Find the length of the perpendicular from the origin upon the
atmlght line joining the two points whose coordinates are

(a cos @, asina) and (a cos B, a sin B).
6. Shew that the product of the perpendiculars drawn from the
two points (£ 4/a¥— b2, 0) upon the straight line

fmo+%sino=1isb=.

7. If p and p’ be the perpendiculars from the origin upon the
straight lines whose equations are z sec 6 +y cosec §=a and
008 6 — y sin §=a cos 20,
prove that 42 +p=al,
8. Find the distance between the two parallel straight lines
y=mz+c and y=mz+d.
9. What are the points on the axis of z whose perpendicular

distance from the straight line E"+Ey.—.1 isa?
10. Shew that the perpendiculars let fall from any point of the

straight line 2z+11y=>5 upon the two straight lines 24z+Ty=20
and 4z -3y=2 are equal to each other.
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11. Find the perpendicular distance from the origin of the
perpendioular from the point (1 2) upon the straight line

z—n/8y +4=0.

. [ I {71 To find the coordinates of the point of intersection

of two given straight lines.
Let the equations of the two straight lines be ,
ax+by+e;=0................ (1),
and ax + by +cy=0.ccoceeniniiiil. 2),
and let the strmght lines be AL, and AL, as in the figure
of Art. 66.

Since (1) is the equation of 4Z,, the coordinates of any
point on it must satisfy the equation (1). 8o the coordi-
nates of any point on 4L, satisfy equation (2).

Now the only point which is common to these two
straight lines is their point of intersection 4.

The coordinates of this point must therefore satisfy
both (1) and (2).

If therefore 4 be the point (z,, ¥,), we have

ax +by+e,=0 . ciiiiiinnn.. (3),
and axy + by +6,=0........ ceorvaenns 4).
~ Solving (3) and (4) we have (as in Art. 3)
x  n 1

—be coy—com ab-ab’

so that the coordinates of the required common point are
biey — byey an 018y — 64y .
ayby-asb, ayby—azb,

e 78. The coordinates of the point of intersection found

in the last article are infinite if
b, = ab, = 0.
But from Art. 67 we know that the two straight lines
are parallel if this condition holds.

Hence parallel lines must be looked upon as lines whom
point of intersection is at an infinite dlsta.nce
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<

'
~ ’4/79. To find the condition that thres straight lines may
meet in a point.

Let their equations be
ax+by+e=0.ciiieriiininni. (1),
. ax+by+e=0......c.eviiiinii, 2),
and e+ by +03=0..cccevuiniiniinin. (3).

By Art. 77 the coordinates of the point of intersection
of (1)rand (2) areb ,
1Cs — 0501 G183 — Csh
b= a, and @by —agh, (4).
If the three straight lines meet in a point, the point of
intersection of (1) and (2) must lie on (3). Hence the
values (4) must satisfy (3), so that
bic, — byey G0y — &t
X ayby—azb, by~ b, *a=0,
t.e. @y (biey = bye) + b5 (6,83 — caa,) + ¢5 (a0, — ahy) = 0,
t.e.  a; (bses — bse,) + b, (a5 — c5,) + ¢, (sDy — ash,) = 0. (B).
ter. If the three straight lines meet in a point let
it be (z,, ), so that the values z, and y, satisfy the
equations (1), (2), and (3), and hence
oz + by, +6,=0,
age, + by, + ¢ =0,
and asx, + by, + 65=0.
— The condition that these three equations should hold
between the two quantities z, and y, is, as in Art. 12,
ay, by, ¢
ay, by, ¢
as; by ¢
which is the same as equation (5).

80. Another criterion as to whether the three straight
lines of the previous article meet in a point is the following.

If any three quantities p, ¢, and » can be found so
that

P(@ax+bdy+ec,)+q(a+by +c)+7r(ax+dy+¢)=0
identically, then the three straight lines meet in a point.

+ by x

=0’
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For in this case we have

azz + by +c,=—€(alm+ b,y+cl)-—%(a,m+b,y +¢5) ...(1).

Now the coordinates of the point of intersection of the
first two of the lines make the right-hand side of (1) vanish.
Hence the same coordinates make the left-hand side vanish.
The point of intersection of the first two therefore satisfies
the equation to the third line and all three therefore meet
in a point.

81. Bx. 1. Shew that the three straight lines 2z-3y+565=0,
8z+4y-7=0, and 9z - 5y+8=0 meet in a point.

If we multiply these three equations by 6, 2, and -2 we have'
identically

6 (22 - 3y +5)+2 (8z+4y — 7) — 2 (9z — by +8)=0.
The coordinates of the point of intersection of the first two lines
make the first two brackets of this equation vanish and hence make
the third vanish. The comihon point of intersection of the first two

therefore satisfies the third equation. The three straight lines
therefore meet in a point.

Bx. 2. Prove that the three perpendiculars drawn from the
vertices of a triangle upon the opposite sides all meet in a point.
Let the triangle be 4BC and let its angular points be the points

(21, ¥1)s (23, ¥s), and (25, yy).

The equation to BC is y -y, = Z’ — Z: (z-=,).
g —
The equation to the perpendicular from 4 on this straight line is
Yy-u= _a:,—x,(z_z )
Y3~ Y3 b
ie. Y W3~ Ys) +2 (T3~ 2o) =1 (Y5~ Ya) + 21 (T3~ Tg) ... ®-

So the perpendiculars from B and C on C4 and 4B are
Y (41— ¥) +2 (21— 25) =y (41—~ Yg) + %5 (2, - T ... @,

and Y (Y- ) +2(Tg—2) =y3 (Y3 - ¥1) + 25 (T2 — 2))...oee. (8).
On adding these three equations their sum identically vanishes.
The straight lines represented by them therefore meet in a point.

This point is called the orthocentre of the triangle.
82. 7o find the equation to any straight line which
passes through the intersection of the two straight lines
ek +by+e=0 .eeennnnnnnn.... 1),
and A+ by + =0 .oooniniiiinnil. 2).

el e — e —
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If (x,, ¥) be the common point of the equations (1)
and (2) we may, as in Art. 77, find the values of x, and y,,
and then the equation to any strmght line through it is

y-p=m(x-a)
where m is any quantity whatever.
Aliter. If 4 be the common point of the two straight

lines, then both equations (1) and (2) are satisfied by the
coordinates of the point 4.

Hence the equation

ax+by+e +A(ax+bdy+e)=0....... 3)
is satisfied by the coordinates of the common point 4,
where A is any arbitrary constant.
But (3), being of the first degree in « and y, always
represents a straight line,
It therefore represents a stra.lght line passing through 4.
Also the arbitrary constant A may be so chosen that (3)

may fulfil any other condition. It therefore represents
any straight line passing through 4.

88. Bx. Find the equation to the straight line which passes
through the intersection of the straight lines

2z -3y +4=0, Bz+4y-5=0.................. 1),
and is perpendicular to the straight line
62— Ty +8=0.....ccceooeeeviriiinninnnnnn. (2).

Solving the equations (1), the coordinates z,, y, of their common
point are given by

T, N 1
(=3)(—-5)-4x4 4x8-2x(-5) 2x4-8x(-8) "
so that o= -4 and y,=4{3.
The equation of any straight line through this common point is

therefore
y-H=m(z+).
This straight line is, by Art. 69, perpendicular to (2) if
mx$=-1, te. if m=-f.
The required equation is therefore
y-i=-F@+&)
ie. 119z + 102y = 125.




58 COORDINATE GEOMETRY.

Aliter. Any straight line through the intersection of the stnught
lines (1) is

2z -3y +4+\ (3z +4y - 5)=0,

i.e. (243N z+y (AN -8)+4-5A=0.......cc....en. @)
This straight line is perpendicular to (2), if
6(2+3\) - 7(4r-38)=0, (Art. 69)
ie. if =i
The equation (3) is therefore
2(2+18) +y (48 - 8) + 4 - 348 =0,
e, 119z + 102y — 126=0.

Bisectors of angles between straight lines.

84. 7o find the equations of the bisectors of the angles
between the straight lines

. ax+by+e=0 ..ol (1),
and ax+by +c;=0 ..... eeereeaeaes (2).

Let the two straight lines be AL, and 4AL,, and let the
bisectors of the angles between them be 4 M, and 4 3/,.

Let P be any point on either of these bisectors and
draw PN, and PN, perpendicular to the given lines.

The triangles PAN, and PAN, are equal in all respects,
so that the perpendiculars PN, and PN, are equal in
magnitude.

Let the equations to the straight lines be written
so that ¢, and ¢, are both negative, and to the quantities

Jal+ b2 and Jal+b? let the positive sign be prefixed.

W |
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If P be the point (A, k), the numerical values of PN,
and PN, are (by Art. 75)
ah +bk+c and a,h+b,k+c, )
—_Jal’*'bn’ Jaivog o)
If P lie on AM,, i.e on the bisector of the angle
between the two straight lines in which the origin lies, the
point P and the origin lie on the same side of each of the
two lines. Hence (by Art. 73, Cor.) the two quantities (1)
have the same sign as ¢, and ¢, respectively.
In this case, since ¢, and ¢, have the same sign, the
quantities (1) have the same sign, and hence
ah+bk+ec a,h+b,k+c,
Nat + b} O
- But this is the condition that the point (4, k) may lie on
the straight line

ax+by+e ax+by+c
Jarebs | ety
which-is therefore the equation to 4 M.

If,:however, P lie on the other bisector 4,, the two
quantities (1) will have opposite signs, so that the equation
to AM, will be

ax +by+e  ax+by+e,
/al’-i-b,’ . n/a,’+b,’ *
The equations to the original lines being therefore

ed so that the constant terms are both positive (or
both negative) the equation to the bisectors is i

l_l,x+bly+_§ g,s+bq+g,
Ve, + a5+ by
the upper sign giving the bisector of the angle in which
the origin lies.

85. Bx. Find the equations to the bisectors of the angles
between the straight lines

8z-4y+7=0 and 12z-6y-8=0.
Writing the equations so that their constant terms are both
positive they are
8z-4y+7=0 and -12z+ 56y +8=0.

&
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The equation - to the bisector of the angle in which the origin lies

is therefore
8z-4y+7_-13z45y+8
NZZrw BN T
ie - 18 (32 — 4y +7) =5 (- 122+ 5y +8),
i.e. 99z — 77y + 51=0.

The equation to the other bisector is
3z-4y+7_  -12z+6y+8

VErE# | JiEts
ie. 18 (82 — 4y +7) + 5 ( - 12z + 5y + 8) =0,
ie. 212 +27y —181=0. -

86. It will be found useful in a later chapter to have
the equation to a straight line, which passes through a
given point and makes a given angle 6 with a given line, in
a form different from that of Art. 62.

Let 4 be the given point (k, k) and L'AL a straight
line through it inclined at an
angle 6 to the axis of x.

Take any point P, whose
coordinates are (x, ), lying on
this line, and let the distance
AP be r.

Draw PM perpendicular o
to the axis of 2 and AN perpendicular to P,

Then x—h=AN=AP cos 0= cos b,
~and y—k=NP=APsin @=1rsin .
x-h y-k
H = £ 1).
= Gad~emf" ®

This being the relation holding between the coordinates
of any point P on the line is the equation required.

Cor. From (1) we have
x=h+rcosf and y=k+rsiné.
The coordinates of any point on the given line are
therefore h+rcos@ and k+rsiné.
87. To find the length of the straight line drawn
through a given point in a given direction to meet a given
straight line.
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Let the given straight line be
Ax+ By +C=0..ccceenvnennnn.n. (1).

Let the given point 4 be (A, k) and the given direction
one making an angle 6 with the axis of .

Let the line drawn through 4 meet the straight line
(1) in P and let AP be r.

By the corollary to the last article the coordinates
of P are '

h+1rcos@ and k+rsin 6.

Since these coordinates satisfy (1) we have

A(h+rcosb)+B(k+rsinb)+C =0.

Ah+ Bk+ C 9
—m ............... ( ),
giving the length 4 P which is required.

Cor. From the preceding may be deduced the length
of the perpendicular drawn from (A, k) upon (1).

For the “m” of the straight line drawn through 4 is
tan 6 and the “m” of (1) is — %
This straight line is perpendicular to (1) if

Ser=

tan 6 x —% =-1,

s.e. if tan ==

so that — = =

and hence
3
Acosf+Bsing= L5
VAT + B
Substituting this value in (2) we have the magnitude
of the required perpendicular,

=A%+ B2

EXAMPLES. VIIIL

Find the coordinates of the points of intersection of the straight
lines whose equations are

1. 22-3y+5=0 and Tz+4y=3.

SIBRAR
OF The

UNIVERS|TY
OF
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x 1_{ _
2. S+3=1and

3. y=mgz+_— and y=mz+ .
m

4, zocos¢,+ysing,=a and z 008 ¢,+y 8in py=a.

5. Two straight lines cut the axis of z at distances a and — a and
the axis of y at distances b and b’ respectively ; ﬁnd the coordinates
of their point of intersection.

6. Find the distance of the point of intersection of the two

straight lines
2z -3y +5=0 and 3z+4y=0
from the straight line :

bz —2y=0.

7. Shew that the perpendicular from the origin upon the

straight line joining the points .

(a2 co8 a, a 8in a) and (a cos B, a sin B)

bisects the distance between them.

8. Find the equations of the two straight lines drawn through

the point (0, a) on which the perpendiculars let fall from the point
(2a, 2a) are of length a.

Prove also that the equation of the siraight line joining the feet
of these perpendiculars is  y+2z=>5a.

9. Find the point of intersection and the inclination of the two
lines

Az+By=A4+B and 4 (z-y)+B(z+y)=2B.
10. Find the coordinates of the point in which the line
2y -82+7=0
meets the line joining the two points (6, —2) and (-8, 7). Fmdslso
the angle between them.

11. Find the coordinates of -the feet of the perpendxcu.lars let fall

/ from the point (5, 0) upon the sides of the triangle formed by joining

) the three gomts (4, 3), (-4, 3), and (0, —5); prove also that the
/ points 80 determined lie on & straight line.

12. Find the coordinates of the point of intersection of the
straight lines .
2z -8y=1 and by-z=3,
and determine also the angle at which they cut one another.
13. Find the angle between the two lines
82+y+12=0 and z+2y-1=0.
Find also the coordinates of their point of intersection and the

equations of lines drawn perpendicular to them from the point
3, -2).

. e | eenSEENER. I ccsihe
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Prove that the points whose coordinates are respectively
(l -1), and (11, 4) lie on a straight line, and find its intercepts
on t e axes.

Prove that the following sets of three lines meet in & point.
15. 2z-8y=17, 3z-4y=13, and 8z-11y=33.
d 3z+4y+6=0, 6z+5y+9=0, and 8z+3y+5=0.

b T
// 17. ;+%=l, —+%=1, and y==z.

18. Prove that the three straight lines whose equations are
16z - 18y +1=0, 122+ 10y -3=0, and 6z+66y - 11=0
all meet in a point.

Shew also that the third line bisects the angle between the other
two.

19. Find the conditions that the straight lines
y=mz+a,, y=max+a, and y=myr+a,

may meet in a point.

Find the coordinates of the orthocentre of the triangles whose
angular points are

20. (0, 0), (2, -1), and (-1, 3).

21. (1,0), (2, -4), and (-5, -2).

22. In any triangle 4 BC, prove that

Y1) the bisectors of the angles 4, B, and C meet in a point,

(2) the medians, i.e. the lines joining each vertex to the middle
int of the opposite side, meet in a point,
and (3) the straight lines through the middle points of the sides
perpendicular to the sides meet in a point.

Find the equation to the straight line passing through
23, the point (8, 2) and the point of intersection of the lines
2z+3y=1 and 3z-4y=6.
* 24. the point (2, —9) and the intersection of the lines
2z +5y ~-8=0 and 3z-4y=36.
\( 25. the origin and the point of intersection of
z-y-4=0 and Tz+y+20=0,
proving that it biseots the angle between them.
26. the origin and the point of intersection of the lines

LY L ¥
A a+b"'1 andb+a L
. 27, the point (a, b) and the intersection of the same two lines,

28. the intersection of the lines
2-2y~a=0 and z+3y-2a=0
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and parallel to the straight line
8z + 4y =0.
29. the intersection of the lines
z+2y+3=0 and 3z+4y+7=0
and perpendicular to the straight line
y-z=8
30. the intersection of the lines
3z-4y+1=0 and 5z+y-1=0
and cutting off equal intercepts from the axes.
31. the intersection of the lines
2z -8y=10 and z+2y=6
and the intersection of the lines
16z - 10y=33 and 12z+ 14y +29=0.
32. If through the angular points of a triangle straight lines be
drawn parallel to the sides, and if the intersections of these lines be

joined to the opposite angular points of the triangle, shew that the
joining lines 8o obtained will meet in a point.
33. Find the equations to the straight lines passing through the
point of intersection of the straight lines
Az+By+C=0 and A’z+B'y+C'=0 and
(1) passing through the origin,
(2) parallel to the axis of y,
(3) cutting off a given distance a from the axis of y,
and (4) passing through a given point («/, ¥').
34. Prove that the diagonals of the parallelogram formed by the
four straight lines
N8z+y=0, \/3y+2=0, /8z+y=1, and \/3y+z=1
are at right angles to one another.

35, Prove the same property for the parallelogram whose sides
are
z.Y_y 2, Y 1 2 Y_ LY
5+3—1’ b+a."'l’ a+b—2’ and b+a—2'

36. One side of a square is inclined to the axis of x at an angle a
and one of its extremities is at the origin; prove that the equations
to its diagonals are

¥ (cos a — 8in a) =2z (sin a +cos a)
and y (8in a +co8 a) + z (co8 a ~ sin a) =a.

Find the equations to the straight lines bisecting the angles
between the following pairs of straight lines, placing first the bisector
of the angle in which the origin lies.

37, z+y\/3=6+2,/3 and z-y./3=6~2,/3.
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38. 12z+5y—-4=0 and 3z+4y+7=0.

39. 4x+3y-7=0 and 24x+Ty-31=0.

40, 2z+y=4 and y+3r=5.

0 yim e i)

Find the equations to the bisectors of the internal angles of the
triangles the equations of whose sides are respectively

42, 3z+4y=6, 12z—b5y=3, and 4z -3y+12=0.

43. 3z+5y=15, z+y=4, and 2z+y=6.

44, Find the equations to the straight lines passing through the
foot of the perpendicular from the point (%, k) upon the straight line

Az+ By +C=0 and bisecting the angles between the perpendicular
and the given straight line.

45, Find the direction in which a straight line must be drawn
through the point (1, 2), so that its point of intersection with the line
z+7y=4 may be at a distance $,/6 from this point.



CHAPTER V.

THE STRAIGHT LINE (coniinued).
POLAR EQUATIONS. OBLIQUE COORDINATES.
MISCELLANEOUS PROBLEMS. LOCL

88. 7o find the general equation to a straight line in
polar coordinates.

Let p be the length of the perpendicular OY from the
origin upon the straight line, and
let this perpendicular make an
angle a with the initial line.

Let P be any point on the
line and let its coordinates be r
and 6.

The equation required will
then be the relation between 7, 6, p, and a.

From the triangle OYP we have

p=rco8s YOP=rcos (a—0)=7cos (0 —a).
The required equation is therefore

o

7 cos (6 —a) =p.

[On transforming to Cartesian coordinates this equation becomes
the equation of Art. 53.]

89. To find the polar equation of the stra,ight' line
Jjoining the points whose coordinates are (ry, 6,) and (r5, 0,).
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Let 4 and B be the two given points and P any point
on the line joining them
whose coordinates are » and

6. 8
Then, since R A
A AOB= A AOP + A POB, 7
we have o S

37ry8in AOB =} ryrsin AOP + }rr,sin POB,
te.  7yry8in(0,—6,) =7y sin (9 - 6,) + rr,8in (6, 6),
b sn(.6) 5n(0-6) sn@®-0)
r 7y rl

OBLIQUE COORDINATES.

90. In the previous chapter we took the axes to be
rectangular. In the great majority of cases rectangular
axes are employed, but in some cases oblique axes may bo
used with advantage.

In the following articles we shall consider the proposi-
tions in which the results for oblique axes are different
from those for rectangular axes. The propositions of Arts.

50 and 62 are true for oblique, as well as rectangular,
coordinates.

91. 7o find the equation to a straight line referred to
axes inclined at an angle o.

Let LPL’ be a straight line which cuts the axis of Y at
a distance ¢ from the origin and is
inclined at an angle 0 to the axis
of .

Let P be any point on the
straight line. Draw PNM parallel
to the axis of y to meet 0X in X,
and let it meet the straight line
through C parallel to the axis of «
in the point N.

Let P be the point (z, y), so that

CN=0M =2, and NP=MP-0C=y—c.

5—2
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Since ¢ CPN = ¢ PNN' - . PCN'=w -0, we have
y—c NP _ sin NCP_ sinf
"z CN sinCPN sin(eo-6)’

sin @

Hence y=a:§lT(—m—_—a~)+c .................. (1).
This equation is of the form
Yy =mx +c,
where
sinf sin @ _ tan 6
™= sin(w—0) sinwcosf—coswsind sinw— coswtan §’
and therefore tanf= o
1+mecosw
In oblique coordinates the equation
y=mx+c

therefore represents a straight line which is inclined at an
angle

m sin w

-1 ——————
tan 14+mcosw
to the axis of a.

Cor. From (1), by putting in succession 6 equal to 90°
and 90° + o, we see that the equations to the straight lines,
passing through the origin and perpendicular to the axes of

z and y, are respectively y =— and y =— x cos w.

cosw

92. The axes being oblique, to find the equation to the
straight line, such that the perpendicular on it from the origin
18 of length p and makes angles o and B with the axes of x
and y.

Let LM be the given straight line and OK the perpen-
dicular on it from the origin.

Let P be any point on the
straight line ; draw the ordinate
PN and draw NR perpendicular
to OK and PS perpendicular to
NR.

Let P be the point (z, ), so
that ON=x and NP =y,
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The lines NP and OY are parallel.
Also OK and SP are parallel, each being perpendicular
to NR.

Thus ¢t SPN=¢KOM=8.

‘We therefore have

- p=0K=0R +SP=0Ncosa+ NP cosf=xcosa+ycosp.
Hence zcosa+ycos B—p=0,

being the relation which holds between the coordinates of
any point on the straight line, is the required equation.

93. To find the angle between the straight lines
y=mx+c and y=mz+c
the axes being oblique.

If these straight lines be respectively inclined at angles
0 and @ to the axis of x, we have, by the last article,

tanf= 209 and tan#:———-—m'smw .
l1+mcosow 1+m cose
The angle required is 6~ 6'.
tan 6 — tan ¢
Now t"m(ane’)z1+1;an0.1;an0’
msin o m' sin ©
l+mcosw 1+m coso
—l m 8in o m’ 8ln o

l+mcosw 1+m' cosaw
msin o (1 +m’ cos w) —m’ sin w (1 + m cos w)
(1 + m cos ) (1 + m’ cos w) + mm’ sin*w
_ (m —m') sin ©
" 1+(m+m')cos w +mm’”
The required angle is therefore
(m —m) sin
1+ (m+m') cos  + mm'”

. tan—l

Cor. 1. The two given lines are parallel if m =m'.
Cor. 2. The two given lines are perpendicular if
14 (m+m’) cos w+mm’=0.
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94. If the straight lines have their equations in the
form
Az + By+C=0 a.nd A’z + By + C'=0,
AI

then 'm——il a.nd m=-=.

B B

Substituting these values in the result of the last article
the angle between the two lines is easily found to be

tan~! AB-AB sin w.
AA’+ BB —(AB + A'B) cos
The given lines are therefore parallel if
A'B— AB =0.
They are perpendicular if

AA'+ BB'=(AB + A’'B) cos w.

98. Bx. The azes being inclined at an angle of 80°, obtain the
equations to the straight lines which pass through the origin and are
inclined at 45° to the straight line x+y=1.

Let either of the required straight lines be y =mz.

The given straight line is y= -2 +1, so that m'=-1.

‘We therefore have

(m—m’) 8in w

P W e = )
14 (m+m') cos & +mm’ tan (£45%),
where m’'= —1 and w=30°.
This equation gives m+l ==1.

2+(m-1)A/3-2m

1
NED
Taking the lower sign we have m= — /3.
The required equations are therefore

-a/3z and y=—~%z,

i.e. y+a/82=0 and ,/3y+z=0.

96. To find the length of the perpendicular from the
point (2, y') upon the straight line Az + By + C'=0, the axes
being inclined at an angle w, and the equation bemg written
80 that C i8 a negative quantity.

-
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Let the given straight line meet the axes in L and X,

() C
so that 0L=—A—4 and 0M=—-?.

Let P be the given point (¢, y').
Draw the perpendiculars PQ, PR,
and PS on the given line and the
two axes.

Taking O and P on opposite sides @
of the given line, we then have

ALPM +AMOL=AOLP+AOPM,
te. PQ.LM+OL.OMsinw=0L.PR+OM.PS..(1)

Draw PU and PV parallel to the axes of ¥ and =, so
that PU=vy' and PV =x'.

Hence PR = PUsin PUR = y'sin v,

and - PS = PVsin PVS =«'sinow.
Also -
LM=.\0I*+OM?*-20L.0M cos o
W—_C’_ C TTTW
el Sk date LY ET 4B

since C is a negative quantity.
On substituting these values in (1), we have

1 2cos«» o
PR x(-C)x \/A’ P4 tAgSne
== y’smm—% « sin o,

Ax’' +By' 4+C

80 th&t PQ:
+ -2 cosw

.8in w.

Cor. If w=90° ie if the axes be rectangular, we
have the result of Art. 75.
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EXAMPLES. IX.

1. The axes being inclined at an angle of 60°, find the inclination
to the axis of z of the straight lines whose equations are

1) y=2z+5,
and (2) 2y=W3-1)z+17.
9. The axes being inclined at an angle of 120° find the tangent
of the angle between the two straight lines
8z+Ty=1 and 28z - 73y=101.
3. With oblique coordinates find the tangent of the angle
between the straight lines
y=mz+c and my+z=d.
11w 197 . .
4, Ify=ztan b7y and y =z tan > represent two straight lines
T
i

5. Prove that the straight lines y+x=c¢ and y=z+d are at
right angles, whatever be the angle between the axes.

at right angles, prove that the angle between the axes is

6. Prove that the equation to the straight line which passes
through the point (k, k) and is perpendicular to the axis of z is

z+ycosw=h+kcos w.

7. Find the equations to the sides and diagonals of a regular
hexagon, two of its sides, which meet in a corner, being the axes of
coordinates.

8. From each corner of a parallelogram a perpendicular is drawn
upon the diagonal which does not pass through that corner and these
are produced to form another parallelogram; shew that its diagonals
are perpendicular to the sides of the first parallelogram and that they
both have the same centre.

9. If the straight lines y=m,z+¢, and y=m,z +c, make equal
angles with the axis of z and be not parallel to one another, prove
that m, +my 4+ 2mym, cos w=0.

10. The axes being inclined at an angle of 30°, find the equation
to the straight line which passes through the point (-2, 3) and is
perpendicular to the straight line y + 3z=6.

11. Find the length of the perpendicular drawn from the point
(4, — 3) upon the straight line 6z + 3y —~ 10=0, the angle between the
axes being 60°,

12. Find the equation to, and the length of, the.perpendicular
drawn from the point (1, 1) upon the straight line 3z + 4y + 5=0, the
angle between the axes being 120°.

-

L
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13. The coordinates of a point P referred to axes meeting at an
angle w are (h, k) ; prove that the length of the straight line joining
the feet of the perpendiculars from P upon the axes is

8in w /5 + k2 + 2hk o8 w.

14. From a given point (A, k) tg)erpendwulm-u are drawn to the
axes, whose inclination is w, and their feet are joined. Prove that
the length of the perpendicular drawn from (h, k) upon this line is

hksin?w

./hﬂ+k= +2hkoos w’

and that its equation is hz — ky =h?- k3.

Straight lines passing through fixed points.
97. If the equation to a straight line be of the form
ar+by +c+X(ax+by+c)=0........»1),
where A 18 any arbitrary constant, st always passes through
one fixed point whatever be the value of A
For the equation (1) is satisfied by the coordinates of
the point which satisfies otk of the equations
‘ax+by+¢=0,
and az+by+c=0.
This point is, by Art. 77,

be’ — b’ (:a’ —ca
( [ ’b, abl_alb))

and these coordinates are independent of A

Bx. Given the vertical angle of a triangle in magnitude and
position, and also the sum of the reciprocals of the sides which contain
it; shew that the base always passes through a fized point.

Take the fixed angular point as origin and the directions of the
sides containing it as axes; let the lengths of these sides in any such
triangle be a and b, which are not therefore given.

1 1 1
We have 2t $=oonst.=7‘ (154 PN 1).
The equation to the base is
z.Y
- + __—_1'
. z 1 1\ _
1.6, by (l)r , E+y ’E_E)_l'

1
i.e. (:c—y)+!ll—‘—l=0.

a

b0
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‘Whatever be the value of a this straight line always passes through
the point given by
z-y=0 and %-1:0,
i.e. through the fized point (k, k).

98. Prove that the coordinates of the centre of the
circle inscribed in the triangle, whose vertices are the points

(@5 %)y (%2 9a), and (%, ys), are
ax, + bay + cay and ayy + by, +cys
a+b+e a+b+e ’
where a, b, and ¢ are the lengths of the sides of the triangle.
Find also the coordinates of the centres of the escribed
circles.
Let ABC be the triangle and let AD and CE be the

bisectors of the angles 4 and C
and let them meet in O'.

A
Then O’ is the required point. Y E (
Since 4D bisects the angle 8 A
BAC we have, by Euc. VI. 3, Ry c
BD DC BD+DC _ a q @2
BA~AC BA+AC b+’ o X
so that ‘

Also, since CO’ bisects the angle AC'D, we have
40" AC _ _b_ _b+e
OD CD ba a
b+c
The point D therefore divides BC in the ratio
BA : AC, e ¢ :b.
Also O’ divides 4D in the ratio b+c¢ : a.
Hence, by Art. 22, the coordinates of D are
e wma B

.
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Also, by the same article, the coordinates of 0’ are

ey + bay cys + by,
b+e)x poy) +ax, d (b+c)x——c+b + ay,
(b+c)+a (b+c)+a i
ie an by towy o ot byt oy
v a+b+c a+b+c

Again, if O, be the centre of the escribed circle opposite
to the angle 4, the line CO, bisects the exterior angle of
ACB.

Hence (Euc. VI. A) we have

40, AC b+c
0D CD 4 °
Therefore O, is the point which divides 4D externally in
the ratio b+ ¢ : a.
Its coordinates (Art. 22) are therefore

(b"'c)cx:::_-:x!—azl (b+c)-—~;:::zy~’—-¢,z‘1/l
Gro—a M /o=
ie —am tbaytery L —aytbyatoys
—a+b+e —at+b+e

Similarly, it may be shewn that the coordinates of the
centres of the escribed circles opposite to B and C are
respectively

(axrbwﬁcxa ayl—byﬁc.%)

a—b+c ’ a—-b+c
and aa:,+ba:,—cx3’ ayl"'bi‘/a""y;).
a+b—c a+b—c

99. As a numerical example consider the case of the
triangle formed by the straight lines

3c+4y—T7=0, 12¢+5y—17=0 and 5x+12y—34=0.

These three straight lines being BC, CA4, and 4B
respectively we easily obtain, by solving, that the points
A, B, and C are

52 67

2 19 —
(7, '7_)1 -1‘6‘, —1—6 and (l, 1)
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=52\, (87 _ . /&% 51%
(‘1‘6“ ) + (1‘6_ ) =A 16" 162
1

RN e I
= 6~/4 +3%=

Hence

85
16°

2\? 19\2 5 12° 13 v
b“/0‘9+0‘7)= A Tl

_‘\/2 52)2+ 19 67\  /396°+165°
=N (7+16) *(771) N TriE

429
112"

112J169 -

Hence
_8% 2_ 1o 8 19 1615
e T N2 YT T T 118
peo 13 B2 676 by 13 67 871
C=T 16 T 11g T “ 112’

' 4 429
“irz’ *nd W= :
The coordinates of the centre of the incircle are therefore

170 676 429 1615 871 429

T2 T2t 112 . 119 Y112t 112

85 13 429 85 13 420 °

7T e 7T 12 1
. -1 d 265
?.6. 1—6— and iﬁ.

The length of the radius of the incircle is the perpen-

dicular from (—11—6, %‘;—g) upon the straight line

Jx+4y-T7=0,
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(3x—-l—1(—s) + (4x ffl;g —7
and therefore = —
N3443
—21+1060-784 255 51
T T Bx112 TH5x112 112

The coordinates of the centre of the escribed circle
which touches the side BC externally are

170 676 429 1615 871 429
12 12t 12 112 T2t g
85 13 429 " 85 13 420 °’
16T T Y12 "6t T2
ie =L
< 42 49

Similarly the coordinates of the centres of the other
escribed circles can be written down.

100. Bx. Find the radius, and the coordinates of the centre, of
the circle circumscribing the triangle formed by the points
(0, 1), (2, 3), and (8, 5).
Let (z,, y,) be the required centre and R the radius.
Since the distance of the centre from each of the three points is the
same, we have
T+~ 1= (2, - 2)*+ (3, - 3)*= (2, - 8P+ (3, - B)*=R3..(1).
From the first two we have, on reduction,
z+y,=3.
From the first and third equations we obtain
6z, +8y,=33.
Solving, we have z,= — § and y, =3¢,
Substituting these values in (1) we get
R=§,/10.

101. Bx. Prove that the middle points of the diagonals of a com-
plete quadrilateral lie on the same straight line.

[Complete quadrilateral. Def. Let 04CB be any quadrilateral.
Let AC and OB be produced to meet in E, and BC and 04 to meet in
F. Join 4B, 0C, and EF. The resulting figure is called a complete
quadrilateral ; the lines 4B, OC, and EF are called its diagonals, and
the poin;s E, F, and D (the intersection of 4B and OC) are called its
vertices.
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Take the lines OAF and OBE as the axes of z and y.

(o} A F X
Let 04=2a and OB=2b, so that 4 is the point (2a, 0) and B is
the point (0, 2b); also let C be the point (2k, 2k).

Then L, the middle point of OC, is the point (%, k), and M, the
middle point of 4B, is (a, b).

The equation to LM is therefore
k-b
y —b:htd (z—a),
i.e. (h—a)y—(k-bd)z=bh—-ak.........cc.cvvu... (1).

Again, the equation to BC is y - 2b=k—-;kz.

20, 5o that F'is the point
— 2bh
= o) )
Similarly, E is the point (0, - ’—.2‘:—'; )

Putting y=0, we have z=

k-b’ h-a

These coordinates clearly satisfy (1), i.e. N lies on the straight
line LM.

Hence N, the middle point of EF, is ( ~bh - - ak) .

EXAMPLES. X.

1. A straight line is such that the algebraic sum of the perpen-
diculars let fall upon it from any number of fixed points is zero;
shew that it always passes through a fixed point. -

2. Two fixed straight lines OX and OY are cut by a variable line
in the points 4 and B respectively and P and Q are the feet of the
perpendiculars drawn from 4 and B upon the lines OBY and O4X.
Shew that, if 4B pass through & fixed point, then PQ will also pass
through a fixed point.
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3. If the equal sides AB and AC of an isosceles triangle be pro-
duced to E and F so that BE . CF = AB?, shew that the line EF will
always pass through a fixed point.

4. If a straight line move 8o that the sum of the perpendiculars
let fall on it from the two fixed points (3, 4) and (7, 3) 18 equal to
three times the perpendicular on it from a third fixed point (1, 8),
prove that there 18 another fixed point through which this line always
passes and find its coordinates.

Find the centre and radius of the circle which is inscribed in the
triangle formed by the straight lines whose equations are

5. 3z+4y+2=0, 8zx-4y+12=0, and 4z -3y=0.

6. 2z+4y+3=0, 4z+3y+3=0, and z+1=0.

7. y=0, 12z-5y=0, and 8z +4y-7=0.

8. Prove that the coordinates of the centre of the circle inscribed
in the triangle whose angular points are (1, 2), (2, 3), and (3, 1) are
8+,/10 16-,/10

and .
6 6
Find also the coordinates of the centres of the escribed circles.

9. Find the coordinates of the centres, and the radii, of the four
circles which touch the sides of the triangle the coordinates of whose
angular points are the points (6, 0), (0, 6), and (7, 7).

10. Find the position of the centre of the circle circumscribing
the triangle whose vertices are the points (2, 8), (3, 4), and (6, 8).

Find the area of the triangle formed by the straight lines whose
equations are

11. y==z, y=2x, and y=3z+4.
12. y+2=0, y=z+6, and y=Tz+5.
13. 2y+z-5=0, y+2x-7=0, and z-y+1=0.

14. 3z -4y+4a=0, 2z - 3y + 42a=0, and 5z - y + a=0, proving also
that the feet of the perpendiculars from the origin upon them are
collinear.

15. y=az-bec, y=bz-ca, and y=cz -abd.

a a a
16. y=mato y—"az+"—;’. and Y=mTt o

17. y=mz+e¢,, y=myz+c,, and the axis of y.
18. y=mz+c), y=mg+c,, and y=myz+c;.
19. Prove that the area of the triangle formed by the three straight
lines a,z + by +¢,=0, agz + by +c;=0, and a,z +byy +cy=0is
a4, b, 0
b Gy by, €y
ag, bg, ¢

+(ayb; ~ aghy) (azbs — aghy) (azhy — ayby)-




80 COORDINATE GEOMETRY. [Exs. X.]

20. Prove that the area of the triangle formed by the three straight
lines
zoosa+ysine-p,=0, zcosB+ysinp-p,=0,
and xzcosy+ysiny—p,= 0,
i{plsm('y B) +p;8in (a —v) +pssin (8- a) }*
sin (y — B) 8in (e — ) sin (8- a)

21. Prove that the area of the parallelogram contained by the
lines

is

dy-8z-a=0, 3y-4x+a=0, 4y-3z-3a=0,

and 3y-4z+2a=0 is a2

22. Prove that the area of the parallelogram whose sides are the
straight lines

oz +by+6,=0, a,;g+by+d;=0, az+by+c;=0,

and % + by + dg=0
(dy=¢)) (dg—cy)

aby—agh,

23. The vertices of a quadrilateral, taken in order, are the points
(0, 0), (4, 0), (6, 7), and (0, 3); find the coordinates of the point of

intersection of the two lines joining the middle points of opposite
sides.

24. The lines z+y+1=0, z -y +2=0, 4z+2y+3=0, and
r+2y-4=0
are the equations to the sides of a quadrilateral taken in order; find
the equations to its three diagonals and the equation to the line on
which their middle points lie.
25. Shew that the orthocentre of the triangle formed by the three
straight lines

a
Y= x+— = +—, and y= +2
my ' Yy=myz my’ Yy=mgz s

is

is the point

R

26. 4 and B are two fixed points whose coordinates are (3, 2) and
(5, 1) respectively ; ABP is an equilateral {riangle on the side of 4B
remote from the origin. Find the coordinates of P and the ortho-
centre of the triangle ABP,

102. EXx. The base of a triangle i3 fived; find the
locus of the vertex when one base angle ts double of the
other.
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Let AB be the fixed base of the triangle; take its
middle point O as origin, the direc-
tion of OB as the axis of xanda = Y
perpendicular line as the axis of y.

Let A0=0B=a.

If P be one position of the ~A O BNX
vertex, the condition of the problem then gives

¢t PBA =2, PAB,

s.e. x— =20,
t.e —tangp=tan20..................... (1).
Let P be the point (k, X). 'We then have
k k
h::tane and h———_a=ta.n¢.

Substituting these values in (1), we have

E 2hva  2(h+a)k

“h-a ) )F (h+ay -k’
1—-(. %=
\i+a
ie. —(h+a)+B=2(h - a?),
s.e. k2~ 3k* — 2ah + a*=0.

But this is the condition that the point (%, k) should lie
on the curve
y*— 32— 2ax + a®=0.
This is therefore the equation to the required locus.

103. Ex. From a point P perpendiculars PM and
PN are drawn upon two fixed lines which are inclined at an
angle w and meet in a fixed point O ; if P move on a fixed
straight line, find the locus of the middle point of MN.

Let the two fixed lines be taken as the axes. Let the
coordinates of P, any position of the
moving point, be (h, k).

Let the equation of the straight
line on which P lies be

’ Az + By +C =0,
so that we have
Ah+ Bk+C=0...... ).

L. 6
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Draw PL and PL' parallel to the axes,
‘We then have
OM=0L + LM = OL + LP cos w=h +kcosw,
and ON=0OL'+L'N=LP+ L'Pcosw=k+hcos o
M is therefore the point (% + % cos w, 0) and & is the point
(0, & + h cos w).

Hence, if (2, y') be the coordinates of the middle point
of MN, we have ’
2 =h+KkCcoS® ..ccvveniunnnnnn. (2),

and 2% =k+hcoB8® ....coevuun...... (3).

Equations (1), (2), and (3) express analytically all the
relations which hold between ', ¥/, %, and %.

Also % and k are the quantities which by their variation
cause @ to take up different positions. If therefore between
(1), (2), and (3) we eliminate ~# and £ we shall obtain a
relation between 2’ and 3’ which is true for all values of %
and £, t.e. a relation which is true whatever be the position
that P takes on the given straight line.

From (2) and (3), by solving, we have

2@ - yeso) g 2 —cos)
sin’o sin’ o
Substituting these values in (1), we obtain
24 (« —y' cos w) + 2B (y — 2’ cos w) + C sinw = 0,

But this is the condition that the point (2, ') shall

always lie on the straight line

24 (x—ycosw) + 2B (y — x cos w) + C'sin*w =0,
.e. on the straight line .

2 (4 — Bcosw) +y (B —4cosw) +4Csin’w =0,
which is therefore the equation to the locus of @.

104. Ex. A straight line s drawn parallel to the.

base of a given triangle and its extremitics are joined trams-
versely to those of the base; find the locus of the point
of intersection of the joining lines.

—_——la—— e, e
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Let the triangle be 04 B and take O as the origin and
the directions of 04 and OB
as the axes of « and y. Y

Let OA=a and OB=, RN .Q
so that ¢ and b are given X
quantities.

Let A'B’ be the straight
line which is parallel to the ¢
base 4B, so that

04' OB
04 = 0= (),
and hence OA'=\a and OB = Ab.

For different values of A we therefore have different
positions of A'B’.
The equation to 458’ is

T, Y _

StaT L ),
and that to 4’'B is

z_ Y_ 9

Na Tl (2)

Since P is the intersection of AB and A'B its coordi-
nates satisfy both (1) and (2). Whatever equation we
derive from them must therefore denote a locus going
through P. Alsoif we derive from (1) and (2) an equation
which does not contain A, it must represent a locus which
passes through P whatever be the value of A; in other
words it must go through all the different positions of the
point P.

Subtracting (2) from (1), we have

a(l—— -(__1) 0,

s.e. 2= % v
This then is the equation to the locus of 2. Hence P
always lies on the straight line

_b >
y—aa’

6—2
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which is the straight line 0Q where 0A@B is a parallelo-
gram.

Aliter. By solving the equations (1) and (2) we
easily see that they meet at the point

- X a __.5_4 b
(AT 17 x+1 )
Hence, if P be the point (%, k), we have

A A
hexme wd b=y
Hence for all values of A, i.e. for all positions of the
straight line 4'B’, we have
h_k
a b’
But this is the condition that the point (%, k), i.e. P,
should lie on the straight line

x

a

b.

y
b’ _
The straight line is therefore the required locus.

105. Ex. A variable straight line i8 drawn through
a given potnt O to cut two fixed straight lines in R and S ;
on it 18 taken a point P such that
2 _1 . 1.
OP OR" 08’
shew that the locus of P is a third fixed straight line.
Take any two fixed straight lines, at right angles and

passing through O, as the axes and let the equation to the
two given fixed straight lines be

Ax+ By +C=0,
and A'z+By+(C'=0.
Transforming to polar coordinates these equations are
1 Acos6+Bsind 1 A'cosf+ B'siné
= ————— and —=—— /04—,
r C r C
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1 1
If the angle .YOR be 0 the values of OR and 05 re
therefore
_Acosf+ Bsin b _A'cos 6+ B'sing

0 and C

‘We therefore have
2 Acos@+ Bsind A’ cosf+ B'sinb

[ /Y 04

=—(C C,)coso (C’ C,)smo

The equation to the locus of P is therefore, on again
transforming to Cartesian coordinates,

9o _ A A _l?_'_li’)
=~%\c 0') y\e*e)
and this is a fixed straight line.

EXAMPLES. XI

The base BC (=2a) of a triangle ABC is fixed; the axes being
BC and a perpendicular to it through its middle point, find the locus
of the vertex 4, when

1. the difference of the base angles is given (=a).
2. the product of the tangents of the base angles is given (=)).

ths. the tangent of one base angle is m times the tangent of the
other.

4. m times the square of one side added to n times the square of
the other side is equal to a constant quantity c2.

From a point P perpendiculars PM and PN are drawn upon two
fixed lines which are inclined at an angle w, and which are taken as
the axes of coordinates and meet in O; find the locus of P

5. ifOM+ONbeequalto2c. 6, if OM- ON be equal to 2d.
7. if PM+PNbeequal to2c. 8, if PM - PN be equal to 3¢c.
9. if MN be equal to 2¢.

10. if MN pass through the fixed point (a, b).

11, if MN be parallel to the given line y =mz.
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12. Two fixed points 4 and B are taken on the axes such that
OA=a and OB=b; two variable points 4’ and B’ are taken on the
same axes; find the locus of the intersection of 4B’ and A'B

(1) when 04’+0B'=04+0B,
1 1 _1 1
04’ OB~ 04 OB’
13. Through a fixed point P are drawn any two straight lines to
cut one fixed straight line OX in 4 and B and another fixed straight

line OY in C and D ; prove that the locus of the intersection of the
straight lines 4C and BD is a straight line passing through 0.

14. OX and OY are two straight lines at right angles to one
another; on QY is taken a fixed point 4 and on OX any point B;
on AB an equilateral triangle is described, its vertex C being on the
side of 4B away from Q. Shew that the locus of C is a straight
line, .

15. If a straight line pass through a fixed point, find the locus of
the middle point of the portion of it which is intercepted between two
given straight lines.

16. 4 and B are two fixed points; if P4 and PB intersect a
constant distance 2¢ from a given straight line, find the locus of P.

17. Through a fixed point O are drawn two straight lines at right
angles to meet two fixed straight lines, which are also at right angles,
in the points P and Q. Shew that the locus of the foot of the
perpendicular from O on PQ is a straight line.

and (2) when

18. Find the locus of a point at which two given portions of the
same straight line subtend equal angles.

19. Find the locus of a point which moves 8o that the difference
of its distances from two fixed straight lines at right angles is equal
to its distance from a fixed straight line.

20. A straight line 4B, whose length is ¢, slides between two
given oblique axes which meet at O; find the locus of the orthocentre
of the triangle O4B.

21. Having given the bases and the sum of the areas of a number
of triangles which have a common vertex, shew that the locus of this
vertex is a straight line.

22. Through a given point O a straight line is drawn to cut two
given straight lines in R and S; find the locus of a point P on this
variable straight line, which is such that

(1) 20P=0R+08,
and (2) OP2=0R.0S.
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23. Given n straight lines and a fixed point O; through O is
drawn & straight line meeting these lines in the points R,, R,, R,,
...R,, and on it is taken a point R such that

w_1 .1 1.1
OR ™ OR, ' OR,  OR; " "OR,’
shew that the locus of R is a straight line.

24. A variable straight line cuts off from n given concurrent
straight lines intercepts the sum of the reciprocals of which is con-
stant. Shew that it always passes through a fixed point.

25. If a triangle A BC remain always similar to a given triangle,
and if the point 4 be fixed and the point B always move along a
given straight line, find the locus of the point C.

26. A right-angled triangle 4BC, having C a right angle, is of
given magnitude, and the angular points 4 and B slide along two
given perpendicular axes; shew that the locus of C is the pair of

straight lines whose equations are y = % %x.

27. Two given straight lines meet in O, and through a given point
P is drawn a straight line to meet them in Q and R; if the
parallelogram OQSR be completed find the equation to the locus
of S.

28. Through a given point O is drawn a straight line to meet two
given parallel straight lines in P and Q; through P and Q are drawn
straight lines in given directions to meet in R; prove that the locus of
R is a straight line.



CHAPTER VL

ON EQUATIONS REPRESENTING TWO OR MORE
STRAIGHT LINES.

106. Suprpost we have to trace the locus represented
by the equation

Y¥-3woy+2282=0.................. (1).
This equation is equivalent to
(y-=z)(y—2x)=0..cceeevennnn. (2).

It is satisfied by the coordinates of all points which
make the first of these brackets equal to zero, and also by
the coordinates of all points which make the second
bracket zero, i.e. by all the points which satisfy the

equation
Yy—x=0...iiinn (3),
and also by the points which satisfy
Y—2=0....ccoceeniin. (4)

But, by Art. 47, the equation (3) represents a straight
line passing through the origin, and so also does equa-
tion (4).

Hence equation (1) represents the two straight lines
which pass through the origin, and are inclined at angles of
45° and tan™ 2 respectively to the axis of .

107. Ex.1. Trace the locus xy=0. This equation
is satisfied by all the points which satisfy the equation
=0 and by all the points which satisfy y=0, t.e. by
all the points which lie either on the axis of ¥ or on the
axis of .

e o S—
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The required locus is therefore the two axes of coordi-
nates.

Ex. 2. Trace the locus 2 —5x + 6=0. This equation
is equivalent to (z —2) (x— 3) =0. It is therefore satisfied
by all points which satisfy the equation z —2 =0 and also
by all the points which satisfy the equation z— 3 =0.

But these equations represent two straight lines which
are parallel to the axis of y and are at distances 2 and 3
respectively from the origin (Art. 46).

Ex. 3. Trace the locus xy— 4x—by+20=0. This
equation is equivalent to (x—5)(y —4) =0, and therefore
répresents a straight line parallel to the axis of y at a
distance 5 and also a straight line parallel to the axis of
at a distance 4.

108. Let us consider the general equation

"On multiplying it by @ it may be written in the form
(a*2? + 2ahxy + h*y?) — (B* - ab) y*= 0,
ie.  {(ax +hy) + y NP —ab} {(ax + hy) — y NA*—ab} = 0.

As in the last article the equation (1) therefore repre-
sents the two straight lines whose equations are

ax+hy +yNIE—ab=0 ............... 2),
and ac+hy—yNh—ab=0............... (3),

each of which passes through the origin.

For (1) is satisfied by all the points which satisfy (2),
and also by all the points which satisfy (3).

These two straight lines are real and different if 4*>ab,
real and coincident if A? = ab, and imaginary if A*<ab.

[For in the latter case the coefficient of y in each of the
equations (2) and (3) is partly real and partly imaginary.]

In the case when A®<ab, the straight lines, though
themselves imaginary, intersect in a real point. For the
origin lies on the locus given by (1), since the equation (1)
is always satisfied by the values x=0 and y=0.
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109. An equation such as (1) of the previous article,
which is such that in each term the sum of the indices of =
and y is the same, is called a homogeneous equation. This

equation (1) is of the second degree; for in the first term
the index of x is 2 ; in the second term the index of both z
and y is 1 and hence their sum is 2; whilst in the third
term the index of y is 2.

Similarly the expression
32 + 4oy — Bxy? + 9P
is a homogeneous expression of the third degree.

The expression
3a® + daty — Buy® + 9y° — Ty

is not however homogeneous ; for in the first four terms
the sum of the indices is 3 in each case, whllst in the last
term this sum is 2.

From Art. 108 it follows that a homogeneous equation -

of the second degree represents two straight lines, real and
different, coincident, or imaginary.

110. The axes being rectangular, to find the angle
between the straight lines given by the equation

ax® + 2hacy + by* =0.....ooooennnl.n. (1).
Let the separate equations to the two lines be
y—mx=0 and y—max=0.......... (2),
80 that (1) must be equivalent to

b(y—mx)(y—mu)=0............... (3).

Equating the coefficients of 2y and a? in (1) and (3), we
have
—b.(my + my) = 2h, and bmym, =q,

2h
80 that my + my=——-, and m,my= %’.
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If 0 be the angle between the straight lines (2) we
have, by Art. 66,

tan 9= ™= " _ Jf(m+my) = dmym,
h -

+ my;m, 1 +mym,
Wt
RV Y, o “
Earar i == IR )
"3

Hence the required angle is found.

111. Condition that the straight lines of the previous
article may be (1) perpendicular, and (2) coincident.

(1) If @+ 5=0 the value of tan 6 is o and hence 0 is
90°; the straight lines are therefore perpendicular.

Hence two straight lines, represented by one equation,
are at right angles if the algebraic sum of the coefficients of
22 and y* be zero.

For example, the equations
2?-4*=0 and 62*+1liy —6y*==0
both represent pairs of straight lines at right angles.
Similarly, whatever be the value of 4, the equation
@ + 2hxy — y* =0,
represents a pair of straight lines at right angles.

(2) If 2% =: ab, the value of tan @ is zero and hence 6 is
zero. The angle between the straight lines is therefore
zero and, since they both pass through the origin, they are
therefore coincident.

This may be seen directly from the original equation.
For if A* = ab, i.e. h= Jab, it may be written

ax® + 2. Jab xy + by = 0,

e (Jaz +Joy)*=0,

which is two coincident straight lines.
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112. 7o find the equation to the straight lines bisecting
the angle between the straight lines given by

L,0M, and L,0M, inclined at angles 6, and 6, to the axis
of w, so that (1) is equivalent to

b(y—-=xtan ) (y—xtanb,)=0.

Hence

1

m0,+tan0,=—-2blb, and tan 6, tan 0,=

Let O4 and OB be the required bisectors.
Since ¢ AOL,= ¢ L,04,
L A0X—-0,=0,— . AOX.
S 2.40X=6,+0,.
Also £t BOX=90°+. A0X.
. 2:.BOX=180°+6, +0,. i

Hence, if 6 stand for either of the angles 40X or BOX,
we have

tan 20 =tan (6, + 6,) =
by equations (2).

But, if (z, y) be the coordinates of any point on either
of the lines 04 or OB, we have

tanf =Y.
x

(2).

o &

tan6, +tan 6, 24
1-tan@,tanf, b—a’
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. 2h 2tané
A —g—_ta.n%—l_mn,a
y
- ’2 _ 2y
_l_f—w’_—yg’
2
. x2-y* xy
?.€6. 8 — b —T.

This, being a relation holding between the coordinates
of any point on either of the bisectors, is, by Art. 42, the
equation to the bisectors.

118. The foregoing equation may also be obtained in the follow-
ing manner:

Let the given equation represent the straight lines
y-mz=0 and y-mgz=0..................... 1),
so that = m, +my= —2—,' and m,m,:g .................. (2).
The equations to the bisectors of the angles between “the straight
lines (1) are, by Art. 84,
Y-z _Y-MT nd LT _ Y-
Nitmd  JTrmg? Nitm®  Jlimd
or, expressed in one equation,
{y-_m;_z_ _ y—m;_z_} { Y-MT | Y-MmT } =0,
N1+m3  f14+m? J1+nc. N1+mg?
ie. ' (y-mz)* (y- maz)’_o
1+m,? 1+4+mg?
ie. (L+m)(y? - 2mzy +myP2%) - (L+m,?) (y° - 2myzy +my?2?) =0,
ie. (my? - my?) (& - y*) + 3 (mymy — 1) (m, —m)) 7y =0,
ie (my +my) (2%~ y?) +2 (my my — 1) zy =O0.
Hence, by (2), the required equation is

‘—bzh(z’—yg)-q-Q (%-— 1) zy=0,
_xy

22—y zy
a-b A’
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EXAMPLES. XII

Find what straight lines are represented by the following equations
and determine the angles between them.

1. 22-Txy+12y%2=0. 2. 4x2-24zy+ 11y2=0.
3. 3322-Tlzy - 14y?=0. 4, 23-622+11z-6=0.
5. y2-16=0. 6. ¥ -zy?-142%y+2423=0.
7. x2+2zysecd+y?=0. 8. 22+2zycotf+y?=0.

9. Find the equations of the strmght lines bisecting the angles
between the pairs of straight lines given in examples 2, 3, 7, and 8.

10. Shew that the two straight lines
23 (tan20 + cos?0) — 2zy tan 0+ y?8in20=0"

make with the axis of x angles such that the difference of their
tangents is 2.

11. Prove that the two straight lines

(22 +y? (cos?0 sin%a +8in%f) = (z tan a — y sin 6)®

include an angle 2a.

12. Prove that the two straight lines

a28in2a cos?0 + 4xy sin a sin § + 2[4 cos a — (1 + cos a)? cos?6]=0

meet at an angle a.

GENERAL EQUATION OF THE SECOND DEGREE.

114. The most general expression, which contains
terms involving « and y in a degree not higher than the
second, must contain terms involving a2 xy, ¥? z, y, and a
constant.

The notation which is in general use for this ex-

pression is
aa? + 2hay + by* + 2gx + 2fy + c......... (1).

The quantity (1) is known as the general expression of
the second degree, and when equated to zero is called the
general equation of the second degree.

The student may better remember the seemingly
arbitrary coefficients of the terms in the expression (1)
if the reason for their use be given.
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The most general expression involving terms only of
the second degree in z, y, and z is —

ax® + by? + c2® + 2fyz + 2gzx + 2hxy ...... (2),
where the coefficients occur in the order of the alphabet.
If in this expression we put z equal to unity we get
ax® + by® + ¢ + 2fy + 29 + 2hxy,
which, after rearrangement, is the same as (1).

Now in Solid Geometry we use three coordinates z, v,
and z. Also many formule in Plane Geometry are derived
from those of Solid Geometry by putting z equal to unity.

‘We therefore, in Plane Geometry, use that notation
corresponding to which we have the standard notation in
Solid Geometry.

115. In general, as will be shewn in Chapter XV,
the general equation represents a Curve-Locus.

If a certain condition holds between the coefficients of
its terms it will, however, represent a pair of straight lines.

This condition we shall determine in the following
article.

116. 7o find the condition that the gcnéral equation
of the second degree
ax® + 2hay + by* + 29z + 2fy +¢=0......... (1)
may represent two straight lines.

If we can break the left-hand members of (1) into two
factors, each of the first degree, then, as in Art. 108, it
will represent two straight lines.

If @ be not zero, multiply equation (1) by @ and arrange
in powers of x; it then becomes

a’? + 2ax (hy + g) = — aby® — 2afy — ac.
On completing the square on the left hand we have
a%? + 2ax (hy + g) + (hy + g)*=y* (h*— ab)

. + 2y (gh—of ) + 9*— aq,
i.e.

(ax +hy+g)=+fy*(FP—ab) + 2y (9h— af ) + g*—ac ...(2).

»
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From (2) we cannot obtain z in terms of y, involving
only terms of thefirst degree, unless the quantity under the
radical sign be a perfect square.

The condition for this is
(gh—af ' = (" — ab) (¢" — ac),
s.e g*h* — 2afgh + a*f? = g*h* — abg® — ach? + a’be.
Cangelling and dividing by a, we have the required
condition, viz. .
abc + 2fgh — af2 -~ bg2—-ch2=0 ...... (3).
117. The foregoing condition may be otherwise obtained thus:
The given equation, multiplied by (a), is v
a?23+ 2ahzy + aby®+ 2agz +2afy +ac=0 ............ (4).

The terms of the second degree in this equation break up, as in
Art. 108, into the factors

az+hy -y /W3 —ab and az+hy+y /K- ab.
If then (4) break into factors it must be equivalent to

{az+(h - W2 —ab)y+ 4} {az+(h+ /h?—ab)y+ B} =0,
where 4 and B are given by the relations

a(4+B)=2ga
A (h+ /12— ab)+ B (h - \JB¥ —ab)=2fa
and AB=@C.......cuuuriveernnnnnnnrnnnnenns
The equations (5) and (6) give Sfa—2gh
A+B=2g, and 4 - B=Y2-%9%,
* 9, an Ny

The relation (7) then gives
4ac=44B=(A + B)*- (4 - B)?
"y (f a- Qﬂ?
ie. (fa- gh)==(g2 - ac) (h? - ab),
which, as before, reduces to
abc+2fgh — af %~ bg? - ch3=0.
Bx. If a be zero, prove that the general equation will represent
two straight lines if
2fgh - bg®— ch*=0.
If both a and b be zero, prove that the condition is 2fg — ck=0.
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118. The relation (3) of Art. 116 is equivalent to the
expression

e kg
B 7=
g f ¢

This may be easily verified by writing down the value
of the determinant by the rule of Art. 5.

A geometrical meaning to this form of the relation (3)
will be given in a later chapter. [Art. 355.]

The quantity on the left-hand side of equation (3) is
called the Discriminant of the General Equation.

The general equation therefore represents two straight
lines if its discriminant be zero.

119. Bx. 1. Prove that the equation
12234+ Tzy - 10y*+ 18z + 45y - 35=0
represents two straight lines, and find the angle between them.
Here
a=12, h=j], b=-10, g=212, f=4t and c=-85.
Hence abc+2fgh — af? - bg? - ch?
=12x(-10) x (-35)+3x 4* x A2 x § — 12 x (4%)2 - (- 10) x (}32)?

-(-85)@)?
=4200-+ 4525 — 6075+ 1822 41208
= - 18754 1822 =0.
The equation therefore represents two straight lines.
Solving it for z, we have

Ate 7y+13 (7y‘+13 _ 10245y +35 7y+13)

12 24
_ [23y-43\?
“\ T
Ty+13_  28y-43
s+ g = 3!;4 ’
. -7  -by+5
%. €. T= 3 or 4 .

The given equation therefore represents the two straight lines
3z=2y -7 and 4x= -5y +5.

L. 7
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The “m’s” of these two lines are therefore § and — ¢, and the
angle between them, by Art. 66,

a2 i-(=% -
=tan™! A" =tan~! (- 3?).
B TR i
Bx. 3. Find the value of h so that the equation
. 63+ 2hxy + 12y2+ 222 + 31y +20=0
may represent two straight lines.

Here
a=6, b=12, g=11, f=31, and ¢=20.

The condition (3) of Art. 116 then gives
20h3 — 841k + 2821 =0,

i.e. (h—32) (20h - 171)=0.

Hence h=37 or 3.

Taking the first of these values, the given equation becomes

627+ 17zy + 1292+ 222 + 81y + 20=0,

i.e. (2z + 3y +4)(3z+ 4y + 5)=0.

Taking the second value, the equation is

2022+ 57zy +40y? + 2140z + 332y + 242 =0,

ie (4 + 5y + 3p) (5x + 8y +10)=0.

EXAMPLES. XIIL

Prove that the following equations represent two straight lines;
find also their point of intersection and the angle between them.

1. 6y-ay—-23+30y+36=0. 2, 22-5zy+4y?+2+2y-2=0.

3. 3y®-8zy-323-29z+3y-18=0.

4, ¥*+ay—22-5bzr-y-2=0.

5. Prove that the equation

234+ 6zy +9y%+ 4z +12y - 5=0

represenis two parallel lines.

Find the value of k so that the following equations mny represent
pairs of straight lines :

6. 62+ 1lry —10y3+ 2+ 3ly+k=0.

7. 1222-10zy+2y?+ 11z - by + k=0,

8. 1223 +kzy+2y%+ 11z - 5y +2=0.

9. 62+ zxy+ky?- 11z +43y - 85=0.
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10. kzy-8z+9y-12=0.
11. 22+32zy+y?-5z—-Ty+k=0.
12, 122% 4y - 6y% - 29248y + k=0.
13. 22%+zy-y3+kx+6y—-9=0.
14, P+kzy+y?-56z-Ty+6=0.
15. Prove that the equations to the straight lines passing through
the origin which make an angle a with the straight line y + =0 are
“given by the equation
%+ 2zy seo 2a+ y3=0.
16. What relations must hold between the coefficients of the
equations
(i) az?+by?+cx+cy=0,
and (ii) ay?+bzy+dy+ex=0,
so that each of them may represent a pair of straight lines ?

17. The equations to a pair of opposite sides of a parallelogram
are

23-Tz+6=0 and y2- 14y +40=0;
find the equations to its diagonals.

120. 7o prove that a homogencous equation of the nth
degree represents n straight lines, real or vmaginary, which
all pass through the origin.

Let the equation be

Y+ Adxy t+ Aty i+ Aty L+ At =0,

On division by z*, it may be written

(a?zc)" 4, (Z)""l +4, (g)"4+ et Ay =0 (1)

This is an equation of the nth degree in g, and hence

must have n roots.

Let these roots be m,, m,, m;, ... m,. Then (C. Smith’s
Algebra, Art. 89) the equation (1) must be equivalent to
the equation

(§-m) (5-m) (2= - ()00

The equation (2) is satisfied by all the points which
satisfy the separate equations

y

5—-m,=0, g—m,=0, ...%-m,,:O,

7—2
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t.e. by all the points which lie on the n straight lines
y—mzx=0, y—mx=0,...y—myx=0,
all of which pass through the origin. Conversely, the

coordinates of all the points which satisfy these n equa-
tions satisfy equation (1). Hence the proposition.

121. Bx. 1. The equation
y® - 6zy? + 1122y — 623=0,
which is equivalent to
(v - 2)(y - 22) (y - 32)=0,
represents the three straight lines
y-2=0, y-2z=0, and y-38z=0,.
all of which pass through the origin.
Bx. 3. The equation y3-5y2+6y=0,
ie. ¥ (y-2)(y-3)=0,
similarly represents the three straight lines
y=0, y=2, and y=3,
all of which are parallel to the axis of .
122. To find the equation to the two straight lines
Joining the origin to the points in which the straight line

le+my=n....cc..ooouvvnnnne.n. (1)
meets the locus whose equation is
ax® + 2hxy + by? + 29z + 2fy +¢=0......... (2).
The equation (1) may be written
lx +my
i | N 3).

The coordinates of the points in which the straight line
meets the locus satisfy both equation (2) and equation (3),
and hence satisfy the equation

ax’+°hxy+by’+9(qw+fy)lx+my (lm-;my)n=0

[For at the points where (3) and (4) are true it is clear
that (2) is true.ﬁ)O

Hence (4) represents some locus which passes through
the intersections of (2) and (3).

_ -
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But, since the equation (4) is homogeneous and of the
second degree, it represents two straight lines passing
through the origin (Art. 108).

It therefore must represent the two straight lines join-
ing the origin to the intersections of (2) and (3).

123. The preceding article may be illustrated geo-
metrically if we assume that the equation (2) represents
some such curve as PQRS in the figure.

X

Let the given straight line cut the curve in the points
P and Q.

The equation (2) holds for all points on the curve PQRS.

The equation (3) holds for all points on the line P¢Q.

Both equations are therefore true at the points of
intersection P and .

The equation (4), which is derived from (2) and (3),
holds therefore at P and Q.

But the equation (4) represents two straight lines, each
of which passes through the point O.

It must therefore represent the two straight lines OF
and 0Q.

124. Bx. Prove that the straight lines joining the origin to the
points of intersection of the straight line x —y=2 and the curve

5224 122y - 8y% + 8 - 4y +12=0
make equal angles with the axes.
As in Art. 122 the equation to the required straight lines is

Bz + 122y — 8y? 4+ (8z — dy) ==Y +12( ) =o......
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For this equation is homogeneous and therefore represents two
straight lines through the origin; also it is satisfied at the points
where the two given equations are satisfied.

Now (1) is, on reduction,

y=4,
86 that the equations to the two lines are
y=2¢ and y= - 2.
These lines are equally inclined to the axes.

125. It was stated in Art. 115 that, in general, an
uation of the second degree represents a curve-line,
including (Art. 116) as a particular case two straight lines.

In some cases however it will be found that such
equations only represent isolated points. Some examples
are appended.

EXx. 1. What 8 represented by the locus
(x—y+ec)P+(x+y—c)=0%........... (1).
< We know that the sum of the squares of two real
quantities cannot be zero unless each of ‘the squares is
separately zero.

The only real points that satisfy the equation (1)
therefore satisfy both of the equations

z—y+c=0 and z+y—e¢=0.

But the only solution of these two equations is
z=0, and y=c.
'I(‘)he only real point represented by equation (1) is therefore
, €).

( '.l)‘he same result may be obtained in a different manner.
The equation (1) gives

(E—y+e=—(x+y—c)
ie. z—y+e==N"I(x+y—c)
It therefore represents the two imaginary straight lines

21— /1) —y (1 +/=T)+c(1+/=1)=0,

and z(l+J/-1)—y(1-~/=1)+c(l-~/=1)=0.
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Each of these two straight lines passes through the
real point (0, ¢). We may therefore say that (1) represents
two imaginary straight lines passing through the point
©, ¢). :

Ex. 2. What 13 represented by the equation

(& —a?)t+ (y* — b*)?=01

As in the last example, the only real points on the locus

are those that satisfy both of the equations
2?—a*=0 and y*'— =0,
e z=s%a, and y==b.
The points represented are therefore
(a, b), (a, —b), (—a, b), and (-_—a', -b).

Ex. 3. What i3 represented by the equation
2+y+a*=01

The only real points on the locus are those that satisfy

all three of the equations
=0, y=0, and a=0.

Hence, unless & vanishes, there are no such points, and
the given equation represents nothing real.

The equation may be written

2?2+ yPt==ad

so that it represents points whose distance from the origin
is an/—1. It therefore represents the imaginary circle
whose radius is a~/~1 and whose centre is the origin.

126. Bx. 1. Obtain the condition that one of the straight lines
given by the equation

az?+ 2hoy + by =0................. e @ -
may coincide with one of those given by the equation
a'z2 4+ 2h 2y + 0Y3=0....cccevvvnnennnnnnnn. 2).
Let the equation to the common straight line be
Y=-mT=0 ....cccciiiiiiiniininis (3).

The quantity y — m, 2 must therefore be a factor of the left-hand of
both (1) and (2), and therefore the value y =m,« must satisfy both (1)
and (2).
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We therefore have
bm®+2hmy +a=0........................... 4),
and U'm?+ 2 my + @' =0......cevervnnnnn 3).
Solving (4) and (5), we have
m,? ™ _ | S
2(ha’-Wa)~ ab' —a’b " 2(bW - bh)"
. ha'-Ha s | ab—a'b )2
B PY (Y A
so that we must have
(ab’ - a'b)*=4 (ha’ - a) (bk’ - V'h).

Bx. 3. Prove that the equation
m (23 - 3zy®) +y% - 822y =0
represents three straight lines equally inclined to one another.
Transforming to polar coordinates (Art. 85) the equation gives
m (cos®6 — 8 cos 0 8in?0) +8in36 — 8 00820 sin =0,

i.e. m (1 -8 tan36) +tan36 - 3 tan 6=0,
. 8tan 6 —tand ¢
t.e m—-—lmgo——tanao.
If m=tan a, this equation gives
tan 30=tana,

the solutions of which are

30=a, or 180°+a, or 860°+a,
i =2 04 & e
i.e. 0—3, or 60 +3, or 120°+3.
The locus is therefore three straight lines through the origin

inclined at angles

, 60°+§, and 120°+§

wia

to the axis of z.

They are therefore equally inclined to one another.

Bx. 8. Prove that two of the straight lines represented by the
equation *

az®+ba?y +exy? +dyS=0 ..................... @)
will be at right angles if
a’+tac+bd+d*=0.
Let the separate equations to the three lines be

y-mz=0, y-mz=0, and y-mu=0,
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8o that the equation (1) must be equivalent to
d (y ~m)z) (y — myz) (y — myz) =0,

and therefore m, 4 my+my= -% ........................... (3),
b
Miglhiy + Tyl + M M= oncnnnnecsnineinnes 3),
a
and By = et (4).
If the first two of these straight lines be at right angles we have,
in addition, (
mme= -1 .......ccoovriiiiniiiinn 5).
From (4) and (5), we have
a
=30
and therefore, from (2),

The equation (3) then becomes
a ( ..°_'.'L“) _1=2
d d Ta
i.e. at+ac+bd+d*=0.

EXAMPLES. XIV.

1. Prove that the equation
y* -2+ 32y (y -2)=0
represents three straight lines equally inclined to one another.
2. Prove that the equation
y2 (008 &« +,/3 8in a) co8 a — zy (sin 2a — \/3 cos 2a)
+z*(gina — 4/8 008 a) sin a =0
represents two straight lines inclined at 60° to each other.

Prove also that the area of the triangle formed with them by the
straight line

(cosa—,/3sina)y - (sina+,/3cosa)z+a=0
a?
N
and that this triangle is equilateral.
3. B8hew that the straight lines
(42-3B%) 2*+ 84 Bxy + (B*- 34%) y*=0
form wig: the line Az + By + C=0 an equilateral triangle whose area

Ty
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4, Find the equation to the pair of straight lines joining the
origin to the intersections of the straight line y =mz + ¢ and the curve
224+yt=a?

Prove that they are at right angles if
2c3=a? (1+m?).
5. Prove that the straight lines joining the origin to the points
of intersection of the straight line

ko + hy =2hk
with the curve (z—h)*+(y-kpP=c?
are at right angles if h?+ k2=c3,

6. Prove that the angle between the straight linés ]ohnng the
origin to the intersection of the straight line y=3z+2 with the curve

224+ 27y + 8y + 42 +8y-11=0 is tan‘12§/——2.
7. Shew that the straight lines joining the origin to the other two
points of intersection of the curves whose equations are
aw*+2hwy+by’+2gz=0
and a'z?+ 2h'xy + b'y? + 29’z =0
will be at right angles if
g(a'+b)-g’ (a+b)=0.
‘What loci are represented by the equations
8. 2z2-y3=0. 9. 22-2y=0. 10. =zy-ay=0.
11, z3-2?-2+1=0. 12, z3-zy?’=0. 13. «*+y3=0.
14. :c’+y’=0. 15. z’y=0. 16. (z’—l)(y2—4)=0.
17. (=-12+(y*-4)?=0. 18, (y-mz-c)*+(y-mz-c)’=
19. (22— a?)? (23— b%)2+ct (y2 — a?)3=0. 20. (z-a)-y2=
21, (z+y)?-c2=0. 22. r=asec(0-a).
23. Shew that the equation
bz? - 2hzy + ay?=0
represents a pair of straight lines which are at right angles to the pair
given by the equation
az?+2hzy + by?=0.
24. If pairs of straight lines
22— 2pxy — y*=0 and 2z%-2¢zy - y?=0
be such that each pair bisects the angles between the other pair, prove
that pg= - 1.
25. Prove that the pair of lines
a?22+2h (a +b) zy + b%y?=0
is equally inclined to the pair
ax? + 2hzy + by? =0,




XIV.} EXAMPLES. 107

26. Shew also that the pair
az?+ 2hzy + by + \ (22 +y?)=0
is equally inclined to the same pair.
27. If one of the straight lines given by the equation
az?+ 2hry + by?*=0
coincide with one of those given by
a'z®+ 2k zy + b'y3=0,
and the other lines represented by them be perpendicular, prove that
ha't' _ Wab _
Y-a b-a
28. Prove that the equation to the bisectors of the aigle between
the straight lines az?+2hxy + by?=0 is
h (2 =y?) + (b - @) zy = (aa® - by") 008 w,
the axes being inclined at an angle w.
29. Prove that the straight lines
az®+ 2hxy + by?=0
make equal angles with the axis of z if h=a cos w, the axes being
inclined at an angle w.
'30. If the axes be inclined at an angle w, shew that the equation
2%+ 2y co8 w+y3? co8 2w=0
represents a pair of perpendicular straight lines.
31. Shew that the equation
008 3a (2% - 3zy®) + gin 3a (3° ~ 32%y) + 3a (22 +y?) - 4a3=0
represents three straight lines forming an equilateral triangle.
Prove also that its area is 3 /343,
32. Prove that the general equation
ax?+ 2hzy + by + 292 + 2fy + ¢ =0
represents two parallel straight lines if
h*=adb and bg=af?.
Prove also that the distance between them is

V="
a(a+bd)’
33. If the equation

ax®+ 2hxy + by* + 29z + 2fy +¢=0

represent a pair of straight lines, prove that the equation to the third
pair of straight lines passing through the points where these meet the
axes is

3/ —aa’bt".

ax?-2hxy+by2+2gz+2fy+c+4-£’!xy_—_o.
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34. If the equation
ax®+ 2hxy + by® + 297 + 2fy + ¢=0
t two straight lines, prove that the square of the distance of
their point of intersection from the origin is
c(a+b)-f1-g*

35. Sl}ew that the orthocentre of the triangle formed by the

straight lines
az?+2hzy + by?*=0 and lx+my=1
is a point («/, y') such that
?_y _ a+b
1" m am®-2him+bB"

86. Hence find the locus of the orthocentre of a triangle of which
two sides are given in position and whose third side goes through a
fixed point.

37. Shew that the distance between the points of intersection of
the straight line

zco8a+ysina—p=0
with the straight lines ~ az®+ 2hey +by?=0
' 2pJH3 = ab
bcos2a—2hcosasina+asin®a’
Deduce the area of the triangle formed by them.
38. Prove that the product of the perpendiculars let fall from the
point (2, y’) upon the pair of straight lines
az?+ 2hzy + by*=0
. ax'?+ 2h’y’ + by
18 Ja-bpram -

39, Shew that two of the straight lines represented by the

equation

is

ay+bayd + caly? + drdy + ext =0
will be at right angles if
(b+d)(ad + be) + (e — a)* (a+c+¢€)=0.
40. Prove that two of the lines represented by the equation
azt + bz3y +cz?y? + dry® + ay*=0
will bisect the angles between the other two if
¢+6a=0 and b+d=0.
41. Prove that one of the lines represented by the equation
az®+ ba?y + cxy? + dy3=0
will biseot the angle between the other two if
(8a+¢)*(be +2cd — 3ad) = (b+ 3d)*(be + 2ab — 3ad).




CHAPTER VIL
TRANSFORMATION OF COORDINATES.

127. It is sometimes found desirable in the discussion
of problems to alter the origin and axes of coordinates,
either by altering the origin without alteration of the
direction of the axes, or by altering the directions of the
axes and keeping the origin unchanged, or by altering the
origin and also the directions of the axes. The latter case
is merely a combination of the first two. Either of these
processes is called a transformation of coordinates.

. We proceed to establish the fundamental formule for
such transformation of coordinates.

128. 7o alter the origin of coordinates without altering
the directions of the axes.

Let OX and OY be the original axes and let the new
axes, parallel to the original, be

OX'and O'Y". )

Let the coordinates of the new Y P
origin O, referred to the original
axes be h and %, so that, if O'L be | N’ ,
perpendicular to 0X, we have 0 X
OL=h and LO'=k. o L N X

Let P be any point in the plane
of the paper, and let its coordinates, referred to the original
axes, be z and y, and referred to the new axes let them be
o and y'.

Draw PN perpendicular to 0X to meet O'X’ in N'.
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Then
ON=x, NP=y, ON'=2, and N'P=y.
We therefore have
x=ON=0L+ON'=h+a,
and y=NP=LO' + N'P=k+y.
The origin is therefore transferred to the point (k, £) when
we substitute for the coordinates « and y the quantities
+h and ¥y +k.

The above article is true whether the axes be oblique
or rectangular.

129. To change the direction of the axes of coordinates,
without changing the origin, both systems of coordinates being
rectangular.

Let OX and OY be the original system of axes and 0X’
and OY’ the new system, and let
the angle, X0X"’, through which
the axes are turned be called 6. -

Take any point 2 in the plane
. of the paper.

Draw PN and PN’ perpen- ) NL X
dicular to OX and OX’, and also
N'L and N'M perpendicular to OX and PN.

If the coordinates of P, referred to the original axes,
}l)e z and y, and, referred to the new axes, be 2’ and y’, we
ave
"ON=x, NP=y, ON'=«, and N'P=y.
The angle
MPN'=90°— ¢+ MN'P=: MN'O= ¢+ X0X'=4.
‘We then have
2=0N=0L—-MN'=0N'cosf—-N'Psinf
=a'cosf—y'sin€.........couvnnnenn.nn 1),
and y=NP=LN'+ MP=0ON'sin6+ N'Pcosf
=a'sinf +y cosh......... T, - (2).

<‘
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If therefore in any equation we wish to turn the axe&/
being rectangular, through an angle § we must substitute

x cos0 -y sinf and x'sinf 4y cos @
for = and y.

‘When we have both to change the origin, and also the
direction of the axes, the transformation is clearly obtained
by combining the results of the previous articles.

If the origin is to be transformed to the point (%, k)
and the axes to be turned through an angle 6, we have to
substitute

h+a'cosf—y'sin@ and & + 2'sin 6 + y' cos @
for & and y respectively.

The student, who is acquainted with the theory of projection of
straight lines, will see that equations (1) and (2) express the fact that
the projections of OP on OX and OY are respectively equal to the
sum of the projections of ON’ and N'P on the same two lines.

130. Bx. 1. Transform to parallel azes through the point (-2, 8)
the equation
222+ 4zy + by — 4r - 22y + 7=0.
We substitute z=2" - 2 and y=y’+3, and the equation becomes -
2(z’ -2)3+4(2'-2) (¥ +3)+5(y +3)3 -4 (z' - 2) -22(y'+8) + 7=0,
i.e. 22" +4z'y’ + by - 22=0.
Bx. 3. Transform to azes inclined at 30° to the original axes the
equation
2242 \/3zy — y?=2al.
For x and y we have to substitute
2’ c08 30° —y’sin 30° and ' sin 30° +y’ cos 30°,
lea__yl xl+le3
3 and s

The equation then becomes

@8-y P+2 V3 (&A1) (2 £¥8/3) - (&' +¥'n/BN=8a3,

ie. 2% -y2=qa?,
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EXAMPLES. XV.

1. Transform to parallel axes through the point (1, —2) the
equations

(1) y?-4z+4y+8=0,
and (2) 2s%+y?-4x+4y=0.
2. What does the equation
(@- 0+ (y - b=
become when it is transferred to parallel axes through
(1) the point (a-c, b),
(2) the point (a, b-c¢)?
3. What does the equation
(a-b) (z2+37) - 2abz=0

become if the origin be moved to the point (a"fb , o) ?

4, Transform to axes inclined at 45° to the original axes the
equations

M) a-y=,
(@) 172%- 162y +17y2=225,
and (3) y*+zt+62%y2=2,
5. Transform to axes inclined at an angle a to the original axes
the equations
1) 2*+y=r’
and (2) 2*+2zytan2a-y?=a3
6. If the axes be turned through an angle tan~12, what does the
equation 4xy — 3z*=a? become ?
7. By transforming to parallel axes through a properly chosen
point (A, k), prove that the equation
1222 — 10zy + 2y* + 11z - 5y +3=0
can be reduced to one containing only terms of the second degree.
8. Find the angle through which the axes may be turned so that
the equation Az +By+C=0

may be reduced to the form z=constant, and determine the value of
this constant. .

131. The general proposition, which is given in the
next article, on the transformation from one set of oblique
axes to any other set of oblique axes is of very little
importance and is hardly ever required.
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*132. 7o change from one set of axes, inclined at an
angle w, to another set, inclined at an angle o', the origin
remaining unaltered.

o M NL X

Let OX and OY be the original axes, 0.X’ and OY" the
new axes, and let the angle XOX' be 6.

Take any point P in the plane of the paper.

Draw PN and PN’ parallel to OY and OY’ to meet 0X
and OX' respectively in N and N', PL perpendicular to 0X,
and IéV ‘M and N'M' perpendicular to OL and LP.

ow
tPNL=(Y0X=0, and PN'M'=Y'0X :: o' +6.
Hence if
ON=x, NP=y, ON'=2/, and N'P=y,
we have ysinw=NPsinw=LP=MN'+M'P
=ON’sin 6 + N'Psin (o’ + 6),

g0 that ysinw=a'8in §+ 3 sin (' +6)............... (1).
Also
z+yco8w=0N+NL=0L=0M+ N'M’
=a'cosf+y cos (o +6)............... (2).

Multiplying (2) by sin w, (1) by cosw, and subtracting,

we have
z8in o =2'sin (0w —0) + ¥ 8in (0 — ' - 0)...... (3).

[This equation (3) may also be obtained by drawing & perpen-
dicular from P upon OY and proceeding as for equation (1).] )

The equations (1) and (3) give the proper substitutions
for the change of axes in the general case.

As in Art. 180 the equations 31) and (2) may be obtained by
equating the projections of OP and of ON’and N’P on OX and a
straight line perpendicular to OX.

L, 8
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*183. Particular cases of the preceding article.

(1) Suppose we wish to transfer our axes from a
rectangular pair to one inclined at an angle o' In this
case w is 90°, and the formulse of the preceding article
become

z =2 cos 6 + y' cos (o' +0),
and y=2'8in @ + y sin (o’ + 6).
(2) Suppose the transference is to be from oblique

axes, inclined at w, to rectangular axes. In this case o’ is
90°, and our formulse become

«8in 0 = 2’ sin (0 — ) — ¥’ cos (w — 6),
and y8in w =4 8in 6 + y cos 6.
These particular formule may easily be proved in-
dependently, by drawing the corresponding figures.

2
axes inclined at an angle 2a, the new azis of x being inclined at an angle

Bx. Transform the equation af - 3!-_1 Jrom rectangular azes to

-ato the old azxes and sin a being equal to —— .
N
Here 6= —a and «’'=2a, 80 that the tormuln of transformation
(1) become
z=(2'+y)cos e and y=(y’- z') sin a.

, and hence the

Since sin a= —_—b—— , we have cos a= ad
N N
given equation becomes
@+y) @ -2»
a?+ 0% a?+40?

=1,

ie. z'y’'=1 (a®+b9).
*134. The degree of an equation is unchanged by any
transformation of coordinates.

For the most general form of transformation is found
by combining together Arts. 128 and 132. Hence the
most general formulee of transformation are

e b ,8in (0 —6) y,sm(w o — 0)’
sin w Sinw
and y:k-{-x’ .«..._o.'. ,Bl_n_(w__-t_di)
‘ sln w Sin w
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For = and y we have therefore to substitute expressions
in ' and y’ of the first degree, so that by this substitution
the degree of the equation cannot be raised.

Neither can, by this substitution, the degree be lowered.
For, if it could, then, by transforming back again, the
degree would be raised and this we have just shewn to be
impossible.

*188. If by any change of axes, without change of origin, the
quantity az*+ 3hzy + by? become
a3+ 3'z'y’ + by,
the azes in each case being rectangular, to prove that
a+b=a'+b', and ab-h¥=a't’ - k3,
By Art. 129, the new axis of z being inclined at an angle 6 to the
old axis, we have to substitute
z'co8f—y'sin @ and z’sin6+y cosd
for z and y respectively.
Hence az?®+2hzy + by?
=a(z’ cos 8 -y’ sin 0)*+ 2h (2’ cos 6 — y’ 8in 0) (=’ sin 6 + y’ cos 6)
+b (' 8in 0+’ 008 6)
=x"[acos? 0 +2hcos §8in 6+ bgein? 6] .
+22'y/ [ - acos 6 8in 0+ h (cos? 6 - 8in?0) + b cos 6 sin 4]
+y"%[a 8in?6 — 2k 008 § 8in 6 + b cos? 6]

We then have
a'=¢.0080 +2h cos 0 8in 0+ pain? 0
=3[(a+b)+(a-b)cos20+2hgin]............... M,
b’ =a sin?@ — 2h 008 0 sin 6+ b cos’d
=3%[{a +b)—(a—d) cos 20 - 2h 8in 26]............... @),
and h'= —acos 0 sin 6 + h (cos30 — 8in26) + b eos 6 sin @
=3[2ho00820 - (a-b)sin2d] ........... RS 3)-

By adding (1) and (2), we have a’+b'=a+b.
Also, by multiplying them, we have
4a'd’=(a+b)? - {(a —b) 008 20 + 2k sin 26}2.
Hence 4a'd’ - 417
=(a+0)?-[{2hsin 26 + (a - b) cos 260}* + {2h cos 26 ~ (a b) sin 26}%]
=(a+b)*~[(a- D)2 +4h%]=4dab - 43,
80 that " @'t -h=ab- k3.
186.. To find the angle through which the azes must be turned so

that the expression az®+ 2hzy + by® may become an expression in which
there is no term involving z'y'.

8—2
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Assuming the work of the previous article the coefficient of z’y’
vanishes if 4’ be zero, or, from equation (3), if
3hoos 30=(a - b) 8in 26,

i.e if tan 20= :Thb .
The required angle is therefore
().

*187. The proposition of Art. 135 is a particular
case, when the axes are rectangular, of the following more
general proposition.

If by any change of axes, without change of origin, the
quantity ax®+ 2hxy + by* becomes a'x* + 2h'zy + b'y?, then

a+b-2hcosw o +b —2h cos

anlo sinto’ ’
ab—h o't —h?
and T T g
sin’w aind

o and o' being the angles between the original and final pairs
of axes.

Let the coordinates of any point P, referred to the
original axes, be # and y and, referred to the final axes, let
them be 2’ and y'.

. By Art. 20 the square of the distance between P and
the origin is &* + 2xy cos  + 3, referred to the original axes,
and z? + 22’y cos ' + Y, referred to the final axes.

‘We therefore always have

2+ 2xy cosw + Y =" + 2x'y cos ' +y...... 1).
Also, by supposition, we have
ax® + 2hxy + by = a'x? + 2h'a'y’ + b'y"...... (2).
Multiplying (1) by A and adding it to (2), we therefore have
2(a+ M) +2xy(h+Acosw) +3* (b +A)
=27 (a' + \) + 22y’ (B + Acos o) + 2 (b + A)...(3).

If then any value of A makes the left-hand side of (3) a
perfect square, the same value must make the right-hand
side also a perfect square.

But the values of A which make the left-hand a perfect
square are given by the condition

(h+Acosw)=(a+1) (b+A),
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te. by
A*(1-cos’w) + A (a + b — 2k cos ) +ab— A*=0,
a+b—2hcosw ab-—h?
— + ==
sin®w sinw
In a similar manner the values of A which make the

right-hand side of (3) a perfect square are given by the
equation

t.e. by PLER Y

& +b0' =2k cosw’ a't'—h?

2 =
AP+ A T e 0.... (5)

Since the values of A given by equation (4) are the same
as the values of A given by (5), the two equations (4) and
(5) must be the same.

Hence we have
a4+b-2hcosw a’'+4+b’—2h’'cosw’
sin*w = sin? w’ ’
a‘b - h’ _ a:bl — hr’
sinfw ~ sintw’

and

EXAMPLES. XVIL

1. The equation to a straight line referred to axes inclined at 30°
to one another is y=2z+1. Find its equation referred to axes
inclined at 45° the origin and axis of z being unchanged.

l?' ed'.'l‘m.nsform the equation 22z?+3,/3zy+38y?=2 from axes
inclined at 30° to rectangular axes, the axis of z remaining
unchanged. '

8. Transform the equation 22+ zy +y3=8 from axes inclined at
60° to axes bisecting the angles between the original axes.

4, Transform the equation y?+ 4y cot a — 4z=0 from rectangular
:.lx:es to oblique axes meeting at an angle a, the axis of = being kept

e same. :

5. If z and y be the coordinates of a point referred to a system of
oblique axes, and 2z’ and y’ be its ooorgfnates referred to another
system of oblique axes with the same origin, and if the formul® of
transformation be

z=mz +ny’ and y=m'z’+n'y,
mi+m?-1  mm/

prove that oy el



CHAPTER VIIL
+ * THE CIRCLE.

138. Def. A circle is the locus of a point which
moves so that its*distance from a fixed point, called. the
.. centre, is equal to a given distance. The given distance is
called the radius of the circle.

nates being two straight lnes throdgh its centre at right
angles.

Let O be the centre of the circle and let a Be-itseradius.

Let OX and OY be the axes of
coordinates. -

Let P be any point on the circum-
ference of the circle, and let its coordi-
nates be z and y.

Draw PM perpendicular to 0.X and
join OP,

Then (Euc. 1. 47)

oOM? + MP* = &,
Ye x24y2=al .
This being the relation which holds between the @ordi-

nates of any point on the circumference is, by Art. 42, the
required equation.

.140. To find the equation to a circle referred to any
rectangular, axes.

v

»
139. 7o find the equation to.a cirdle, tlw‘mceaofcoordi— .
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Let OX and OY be the two rectangular axes.

Let C be the centre of the
circle and a its radius.

Take any point P ou the
circumference and draw per- c
pendiculars CM and P¥ upon
OX ; ket P be the point (x, y).

Draw CL perpendicular to —

NP
Let the coordinates of Cbe O MoNoX

% and k; these are supposed to be known,
We have CL=MN=0N—-OM=x—h, a

and ~ LP=NP—_NL=NP—-MC=y—*k
Hence, since CL*+ LPP=CP,

we have (x—h)24(y—-k)3=a2............... (1).
Thig is theyrequired equation.

T

‘Bx. The equation to the circle, whose centre is the point ( - 3, 4)
and whose radius is 7, is

(z+3)3+(y-4)2=T2
i.e ¢ 23+9424 67— 8y =24.
141. Some particular cases of the precedmg article may be
noticed :
(a) Let the origin O be on the circle so that, in this case,
OM2+ MC?= a’,
i.e. h?+k3=a?.
The equation (1) then becomes
: (@- P+ (y - BP=h+ R,
i.e. ’ 224 y3 - Bhz - 2ky =0.
(p Let the origin be not on’the ocurve, but let the centre lie ont
the axis of z. In this case k=0, and the equation becomes
(%— B2 +y2=al.
(y) Let the origin be on the curve and let the axis of z be a
diameter. We now have k=0 and a=h, so that the équation becomes
22493 - 2hx=0.
éi) By taking O at C, and thus making both & and k zero, we
have the case of Art, 139.
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() The circle will touch the axis of z if MC be equal to the
radius, i.e. if k=a.
The equation to a circle touching the axis of z is therefore
234 y% - 3hz — Bky + K3=0.
Similarly, one touching the axis of y is
23+y3 - 3hz - Bky + k3=0.

142. 7o prove that the equation
2+ + 292+ 2y +c=0............... (1),

always represents a circle for all values of g, f, und ¢, and to
Jind its centre and radius. -[The axes are assumed to be
rectangular.] :

This equation ma.y be written
(2 + 292+ 9% + (VP + 2y + ) =g*+ /" —¢,
ie. (@+gf+(y+ /) =/ + "~}

Comparing this with the equation (1) of Art. 140 we
see that the equations are the same if

h=—g, k=—f, and a=Jg*+ P ~c.
Hence (1) represents a circle whose centre is the point
(-9, —f), and whose radius is ,/g*+/? —c.
If ¢* + f* > ¢, the radius of this circle is real.

If g%+ f?=c, the radius vanishes, 1.e. the circle becomes

a point comcldmg with the point (—g, —f). Such a circle
is called a point-circle.

If g+ /% <c, the radius of the circle is imaginary. In
this case the equatlon does not represent any real
metrical locus. It is better not to say that the circle does
not exist, but to say that it is a circle with a real centre
and an imaginary radius.

Bx. 1. The equation 22+ y3+42-6y=0 can be written in the

form
(z+2+(y - 3)*=13=(/13)2,

and therefore represents a eircle whose centre is the point (- 2, 8) and
' whose radius is 4/18.
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Bx. 8. The equation 4522+ 45y2 - 60z + 86y + 19=0 is equivalent
24yl -fz+fy=-1t,

i.e. E-D'+ @+ 1=+ - =+,
and therefore represents a cirole whose centre is the point (§, - ) and
whose radius u'l/——

15

143. Condition that the general equation of the second
degree may represent a circle.

The equation (1) of the preceding article, multiplied by
any arbltmry constant, is a particular case of the general
equation of the second degree (Art. 114) in which there is
no term containing xy and in which the coefficients of a*
and 7* are equal.

The general equation of the second degree in rectangular

 coordinates therefore represents a circle if the coefficients

of x? and y2 be the same and if the coefficient of xy
be zero.

144. The equation (1) of Art. 142 is called the
general equation of a circle, since it can, by a proper
choice of g, f; and ¢, be made to represent any circle.

The three constants g, f, and ¢ in the general equation
correspond to the geometrical fact that a circle can be found
to satisfy three independent geometrical conditions and no
more. Thus a circle is determined when three points on it
are given, or when it is required to touch three straight
lines.

148. To find the equation to the circle which is described on the
line joining the points (z,, y,) and (z,, y,) as diameter.

Let 4 be the point (z,, y,) and B be the pomt (a:,, y3), and let the
coordinates of any point P on the circle be & and ’

The equation to AP is (Art. 62)

k-
y-h=j y: (Z=2) eereiieiniees e, (1),
and the equation to BP is
’ k-
Y- y,_z—— ’(.t —Zg) eririeiniiieeieenenne (8)0

But, since APB is a semicircle, the angle APB is a right angle,
and hence the straight lines (1) and (2) are at right angles.
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Hence, by Art. 69, we have
k-y, k-ys_ _,
h—z, " h-=z, ’
i.e. (h==) (h—zg) +(k —v,) (k- y5)=0.

But this is the condition that the point (k, k) may lie on the curve
whose equation is

(z-2y) (2 —23) +(y - ¥) (¥ —¥3) =0.
This therefore is the required equation.
146. Intercepts made on the azes by the circle whose equation is
az?+ay?+ 297+ 2fy+c=0 ....cceeeeernnnnnn. (1).

The abscissm of the points where the circle (1) meets the axis of z,
i.e. y=0, are given by the equation

az?+2gz+¢=0 ........... (2).

The roots of this equation being =, and z,,
we have

2
z) +Ty= —zg,

and ‘“‘F:‘;' (Art. 3)
Hence N
A Ay=zy-2,= ,\/(;u»;1 +5)? - 4z, 2,

\/ 49> 4c__ NJg*-ac
= 5= s xXs .,
[/ a a

Again, the roots of the equation (2) are both imaginary if g2<ac.
In this case the circle dogs not meet the axis of z in real points, i.e.
geometrically it does not meet the axis of z at all.

The circle will touch the axis of z if the intercept 4,4, be just
zero, i.e. if g?=ac. .

It will meet the axis of z in two points lying on opposite sides of
the origin O if the two roots of the equation (2) are of opposite signs,
1. e. if ¢ be negative. :

147. Bx.1l. Find the equation to the circlewhich passes through
the points (1, 0), (0, - 6), and (3, 4).
Let the equation to the circle be
224924292+ 2fY+¢=0 ..eviiennennnnns ).

Since the three points, whose coordinates are given, .satisfy this
equation, we have

1429+¢=0...ccccccniiiniiiniinniinnn. (2),
86—12f+€=0..c..ceovvvureirinnnnnrnnnnns (3),
and 25469+8f+¢=0...ccccereiriiiirirnnninnnns (4).
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Subtracting (2) from (3) and (3) from (4), we have

2g + 12 =365,
and 6g+20f=11.
Hence Sf=4L and g= -4,

Equation (2) then gives c=42,
Substituting these values in (1) the required oquation is
423+ 4y® - 1422 + 472 + 188=0.

Bx. 2. Find the equation to the circle which touches the azis of y

at a distance +4 from the origin and cuts off an intercept 6 from the
azis of .

Any circle is 22+ y3+ 29z +2fy +¢=0.
This meets the axis of y in points given by
. Y24+ 2fy+c=0.

The roots of this equation must be equal and each equal to 4, so
that it must be equivalent to (y —4)*=0.

Hence 2f= -8, and ¢=16.
The equation to the circle is then

22+ y2+ 29z - 8y +16=0.
This meets the axis of z in points given by

2?4+ 2g%+16=0,
i.e. at points distant

-g+A/#—16 and -g- \/g"-16.
Hence 6=2,/77—16.
Therefore g= + 5, and the required equation is
22 +y3+102 - 8y +16=0,

There are therefore two circles satisfying the given conditions.
This is geometrically obvious.

EXAMPLES. XVII.
- Find the equation to the circle
1. Whose radius is 8 and whose centre is (-1, 2).
2. Whose radius is 10 and whose centre is (- 5, —6).
3. Whose radius is a + b and whose centre is (s, —b).
" 4. Whose radius is /a?— 5% and-whose centre is (~a, - b).

Find the coordinates of the centres and the radii of the circles
whose equations are

5. z+y?-4z-8y=4l. 6. 32%+3y2-b5z— 6y +4=0.
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7. 2+y*=k(z+k). 8. 22+y3=2%z - 2fy.
9. A/T4m?(22+y?) - 2cz - 2mey =0.
Draw the circles whose equations are
0. z%+y*=2ay. 11. 382%243y=4a.
12, 5a%+5y*=2x+3y.

13. Find the equation to the circle which passes through tbhe

ints (1, - 2) and (4, — 8) and which has its centre on the straight
ine 3z +4y="17. .

14, Find the equation to the circle passing through the points
(0, a) and (b, k), and having its centre on the axis of z.

Find the equations to the circles which pass through the points

L, 15 (0,0,(2,0,and(0,5). 16, (1, 2), (8, —4), and (5, —6).

17. (1, 1), (2, -1), and (8, 2). 18. (5,7), (8, 1), and (1, 3).
19. (a b), (4, ~b), and (a-+d, a=b).

20. 4BCD is a square whose side is a; taking 4B and 4D as
axes, prove that the equation to the circle circumscribing the square is

/ iyt=a(z+y).
21. Find the equation to the circle which passes through the

origin and cuts off intercepts equal to 3 and 4 from the axes.

22. Find the equation to the circle passing through the origin
and the points (a, b) and (b, a). Find the lengths of the chords that
it cuts off from the axes.

23. Find the equation to the circle which goes through the origin
and cuts off intercepts equal to & and k from the positive parts of the
axes, ’

24, Find the equation to the circle, of radius a, which passes
through the two points on the axis of z which are at a distance b from

the origin.
Find the equation to the circle which
25, touches each axis at a distance 5 from the origin.
26. touches each axis and is of radius a.
27. touches both axes and passes through the point (-2, - 3).

28. touches the axis of x and-passes through the two points
(1, -2) and (3, - 4).

29, touches the axis of y at the origin and passes through the
point (b, ¢).
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. 30. touches the axis of z at a distance 8 from the origin and
intercepts a distance 6 on the axis of y.

) 31. Points (1, 0) and (2, 0) are taken on the axis of z, the axes
being rectangular. On the line joining these points an equilateral
triangle is described, its vertex being in the positive glmmdnnt. Find
the equations to the circles described on its sides as diameters.

32. If y=maz be the equation of a chord of a cirele whose radius is
a, the origin of coordinates being one extremity of the chord and the
axis of z being a diameter of the circle, prove that the equation of a
circle of which this chord is the diameter is

: (1+m®) (#2+y?) - 2a (z +my)=0.

33. Find the equation to the circle passing through the points
(12, 43), (18, 39), and (42, 8) and prove that it also passes through
the points ( — 54, — 69) and (- 81, - 38).

34. Find the equation to the circle circumseribing the quadrilateral
formed by the straight lines

2z48y=2, 8z-%y=4, z+2=3, and 2zr-y=8.

35. Prove that the equation to the circle of which the points
(z,, y,) and (z,, y,) are the ends of a chord of & segment containing an
angle @ is

(®—2) (-2)+(y-9)(y-ya) _
*cot 0 [(z - ,) (y - 3)) - (z ) (y - 4,)1=0.

36. Find the equations to the circles in which the line joining the
points (a, b) and (b, —a) is a chord subtending an angle of 45° at any
point on its circamference.

148. Tangent. Euclid in his Book III. defines the
tangent at any point of a circle, and proves that it is always
. perpendicular to the radius drawn from the centre to the
point of contact.
From this property may be deduced the equation to the
tangent at any point (2, 3’) of the circle a? + y* = a’
( For let the point P (Fig. Art. 139) be the point
<, ¥')
' The equation to any straight line passing through P is,
by Art. 62,
y-y=m(@x-o).....ccc..oeun. (1).
Also the equation to OP is

’

' y=4z @

-
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The stmight; lines (1) and (2) are at right angles, t.e. the
line (1) is a tangent, if

mx¥L=—1, (Ast. 69)
i.e. if - m=——.

Substituting this value of m in (1), the equation of the
tangeht at (¢, y') is

, ,
y—y=—§,(w—x),

e 2 +yy =2y (3)-
. But, since (2, %) lies on the circle, we have 2" + 3 = a?,
and the required equation is then
xx’' 4+ yy' =a2

149. In the case of most curves it is impossible to
_* give a simple construction for the tangent as in the case of

 ,'the circle. It is therefore necessary, in general, to give a
different definition.

Tangent. Def. Let P and @ be any two points, near

to one another, on any curve.

Joir PQ; then PQ is called a
secant.

The position of the line PQ when
the point @ is taken indefinitely close
to, and ultimately coincident with, the
point P is called the tangent at 2.

The student may better appreciate
this definition, if he conceive the curve
to be made up of a succession of very small points (much
smaller than could be made by the finest conceivable drawing
pen) packed close to one another along the curve. The
tangent at P is then the straight line joining P and the
next of these small points.

/# ., 150. To find the equation of the tangent at the point
::'//(a:', Y') of the cvrcle «* + i =a’. P

SRS vy
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Let P be the given point and @ a point (2", y”) lying on
the curve and close to 2.
" The equation to PQ is then
_y-y ,
y—y’—x,,_x,(x—:c) ............... (1).
Since both (2, %) and (z", ") lie on the circle, we have
2 +y? =d,
and "+ y"?=a'.

By subtraction, we have
%4 :'/"’ - yl’ = 0’

i.e. @ -2)(@"+2)+ @ ~-y) (Y +¥)=0,
. yll—y__xll-'-m'
2.6. z — .93’ = y’" + y' . .
Substituting this value in (1), the equation to PQ is
xl'+z’
—Y === ool 2).
Y=Y ==y ®=% @

Now let @ be taken very close to P, so that it ulti-
mately coincides with P, s.e. put 2" =2’ and y”’ =y
Then (2) becomes
2

’ x’ ’
y—y=—§;(w—x),

s.e. yy +ax =2+ y" =a’.
The required equation is therefore
XX Yy =8% i, 3).
-

It will be noted that the equation to the tangent
found in this article coincides with the equation found
from Euclid’s definition in Art. 148.

Our definition of a tangent and Euclid’s definition there-
fore give the same straight line in the case of a circle.
181. 7o obtain the equation of the tangent at any point
(=, y') lying on the circls
2 +y+ 22 + 2fy +¢=0.
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Let 2 be the given point and @ a point-(z", y”) lying on
the curve close to P.
The equation to PQ is therefore

vy =4 @) ).

Since both (2, ') and (", ") lie on the circle, we have
2?4+ Yy + 22 +2fy +c=0............ 2),
and 2+ Yy + 292" + 2" +¢c=0 .......... (3).

By subtraction, we have
-yt -y + 2 (2 —2)+ 2 (¥ - ¥)=0,

fe (-2 (@ +2)+ 6 ~Y) (¢ +Y+Y) =0,
. ¥y -y d'+a+2
..e o —d Yy
Substituting this value in (1), the equation to PQ be-
comes

' + o + 29 ,
— e ——— —————] Eanlt’ i B, 4.
Yy 3/ y"+:'/+2f(x m) ( )

Now let @ be taken very close to P, so that it ultimately
coincides with P, i.e. put " =2’ and ¥’ =y.
The equation (4) then becomes

,__Z+ ,
y-y =—y,+:(;.(x—a:),
t.e. y@+f)+x(@+g)=y' ¥ +f)+a (&' +9)
=2 +y" + g7 + fy
=—gr' - fy — ¢
by (2).
This may be written . /
x'+yy +8 (xX+x)+f(y+y)+c=0
which is the required equation.
152. The equation to the tangent at («, /) is there-

fore obtained from that of the circle itself by substituting
ax’ for o*, yy' for o, = + ' for 2z, and y + ¢ for 2y.



T T— —

N\ -

\‘4\

INTERSECTIONS OF A STRAIGHT LINE AND A CIRCLE. 129

This is a particular case of a general rule which will be
found to enable us to write down at sight the equation to
the tangent at (2, 3') to any of the curves with which we
shall deal in this book.

153. Points of intersection, in general, of the straight
line

with the circle

The coordinates of the points in which the stra,lght line
(1) meets (2) satisfy both equations (1) and (2).

If therefore we solve them as simultaneous equations
we shall obtain the coordinates of the common point or
points.

Substituting for y from (l) in (2), the abscisse of the

required points are given by the equation

' o + (mx + ¢)*=ad,
i.e. o (L+m®)+ 2mex + *—a’=0 ......... (3).
The roots of this equation are, by Art. 1, real, coinci-
dent, or imaginary, according as
(2me)® — 4 (1 + m®) (¢" — a®) is positive, zero, or negative,
t.e. according as
a* (1 + m®) — ¢* is positive, zero, or negative,
i.e. according as
cis <= or > a*(1 + m?).
In the figure the lines marked I, II, and III are all
parallel, i.e. their equations all have the same “m.”

L. 9
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The straight line I corresponds to a value of ¢* which
is <a® (1 + m?) and it meets the circle in two real points.

The straight line III which corresponds to a value of c?,
> a? (1 + m*), does not meet the circle at all, or rather, as in
Art. 108, this is better expressed by saying that it meets
the circle in imaginary points.

The straight line I corresponds to a value of ¢? which

is equal to a® (1 + m®), and meets the curve in two coincident
points, <.e. is a tangent. :

154. We can now obtain the length of the chord inter-
cepted by the circle on the straight line (1). For, if 2, and
2, be the roots of the equation (3), we have

c—a®

Iy and wlx’::——l.i.m"

a2
x‘w“—l+'m

Hence

@, — :z:,=~/(:::l + @) — 4oy, =T12—mﬂ/m’c’— (¢—a’)(1 + m*)

__2 2 N _
_]+m,./a (1 +m*)—c
If y, and y, be the ordinates of @ and R we have, since
these points are on (1),
= Yo =(m2, + ¢) — (may + ¢) =m (2, — x).
Hence -
QR =J(th—ya)" + (o — @)’ = JT + m? (, — ;)
& (1 +m) —¢*
1+m®

In a similar manner we can consider the points of inter-
section of the straight line y = ma + & with the circle

o+ 9+ 2z + 2fy + c=0.
1858. The straight line

y=mx +a, /1 +m*

18 always a tangent to the circle
o +y'=a.

=2
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As in Art. 153 the straight line
y=mx +c
meets the circle in two points which are coincident if
c=a T

But if a straight line meets the circle in two points
which are indefinitely close to one another then, by Art.
149, it is a tangent to the circle.

The straight line y = ma + ¢ is therefore a tangent to the
circle if

=L+ o
t.e. the equation to any ent to the circle is
y=mx+a.~/1+m’ .............. (1).

Since the radical on the right hand may have the + or —
sign prefixed we see that corresponding to any value of .
there are two tangents. They are marked I1 and IV in
the figure of Art. 153.

1566. The above result may also be deduced from the equation
(3) of Art. 150, which may be written
zI

R 2 e 1).
y=-grty ()]

Put —;,=m, 80 that 2’ = — my’, and the relation 22+ y2=a? gives
y?(m2+1)=a?, i.e. ;: J +m?.
The equation (1) then becomes

y=mz+a\/1¥md
This is therefore the tangent at the point whose coordinates are

~e  and ——2
N1+m? o J1+m?

187. If we assume that a tangent to a circle is always perpen-
dicular to the radius vector to the point of contact, the result of
Art. 155 may be obtained in another manner.

For a tangent is a line whose perpendicular distance from the
centre is equal to the radius.

9—2
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The straight line y=mz+ ¢ will therefore touch the circle if the
perpendicular on it from the origin be equal to a, i.e. if

S ° -
1+m?
i.e, if e=a\1+m?

Til:‘i‘ls method is not however applicable go any other curve besides the
circle. .

a,

188. Bx. Find the equations to the tangents to the circle
2+y?-6z+4y=12
which are parallel to the straight line
4z+ 3y +5=0.
Any straight line parallel to the given one is
4z24+3Y+C=0.......cccccevviiiiiiin. 1.
The equation to the circle is
(z-3)2+(y+2)2=5%

The straight line (1), if it be a tangent, must be therefore such
that its distance from the point (3, —2) is equal to +5.

Henoe 13-6+C_ 4 (Art. 75),
JEE+32
5o that C= -6+25=19 or - 1.

The required tangents are therefore
4z +3y+19=0 and 4z +3y-31=0.

159. Normal. Def. The normal at any point P of
a curve is the straight line which passes through P and is
perpendicular to the tangent at P.

To find the equation to the normal at the point (', y') of
(1) the circle
2+ gt = o,
and (2) the circle
2+ 3+ 2%+ 2y +c¢=0.
(1) The tangent at («, ') is
’ ' +yy = a’,
t.e -2 x+ ‘f
- YTy Ty
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The equation to the straight line passing through (', y)

perpendicular to this tangent is
y-y =m@—2)
where m x (_ 3) -—1, (Art. 69),
t.e. m= "L, .
x

The required equation is therefore
’ —_ ZI — !
y—y=3@—2)

z.e. dy—axy =0.
This straight line passes through the centre of the circle
which is the point (0, 0).

If we assume Euclid’s propositions the equation is at once
written down, since the normal is the straight line joining

(0, 9) to (=, y)-
(2) The equation to the tangent at (2, y') to the c1rcle
©+y+2x+2fy+c=0
. 2+ x +fy + ¢
is == +§f g y,{Jf . (Art. 151)
The equation to the straight line, passing through the
point (2, ') and perpendicular to this tangent, is
y—y =m(x—a),

where ™~ m x ( '+ y) -1, (Art. 69),
: > n
e ?/ +f
T+ g
The equation to the normal is therefore
Y+S
Y=y =y, @

t.e. y@ +g)—x @ +)+ S —gy =0.
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EXAMPLES. XVIIL

Write down the equation of the tangent to the circle

1. 22+y?-8z+10y =15 at the point (4, —11).

2. 42?+43y%— 162+ 24y =117 at the point (-4, —12).

Find the equations to the tangents to the circle

3. 2?+y?=4 which are parallel to the line z + 2y +3=0.

4, z?+y%+2gz+2fy +c=0 which are parallel to the line
z+2y-6=0.

5. Prove that the straight line y==xz-+c./3 touches the circle
z2+y%=c? and find its point of contact.

. Find the condition that the straight line cz — by + 4*=0 may
touch the circle *+y*=az + by and find the point of contact.
7. Find whether the straight line z+y =2+ ,/2 touches the circle
z3+y3 -2z -2y +1=0.
8. Find the condition that the straight line 3z+4y=£k may
touch the circle z%+y?=10z.
9, Find the value of p so that the straight line

zcosa+ysina—p=0
may touch the circle

2%+ y? - 2azx 008 a — 2by sin a — a?sin%a =0.
10. Find the condition that the straight line 4z + By + C=0 may
touch the circle
(x-a)’+(y - bP=c
11. Find the equation to the tangent to the circle 2?+y*=a?
which
(i) is parallel to the straight line y=mz +c,
(ii) is perpendicular to the straight line y =mz + ¢,
(iii) passes through the point (b, 0),
and (iv) makes with the axes a triangle whose area is a®.
12. Find the length of the chord joining the points in which the
straight line
meets the circle a2+ y2=13,

13. Find the equation to the circles which pass through the origin
and cut off equal chords a from the straight lines y =z and y = - z.

—-—
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14. Find the equation to the straight lines joining the origin to
the points in which the straight line y=mz + ¢ cuts the circle

22+ y?=2ax + 2by.
Hence find the condition that these points may subtend a right
angle at the origin.

Find also the condition that the straight line may touch the
circle.
Find the equation to the circle which
15. has its centre at the point (3, 4) and touches the straight line
sz +12y=1.
16. touches the axes of coordinates and also the line
z.Y_
a +\9 =1
the centre being in the positive quadrant.

17. has its centre at the point (1, —3) and touches the straight
line 2z -y - 4=0.

18. Find the general equation of a circle referred to two perpen-
dicular tangents as axes.

19. Find the equation to a circle of radius r which touches the
axis of y at a point distant & from the origin, the centre of the circle
being in the positive quadrant.

Prove also that the equation to the other tangent which passes
through the origin is
(8- K?) 2+ 2rhy =0,

20. Find the equation to the circle whose centre is at the point
(a, B) and which passes through the origin, and prove that the
equation of the tangent at the origin is

ax+ By =0.

21. Two olrcles are drawn through the points (a, 5a) and (4a, a)
to touch the axis of y. Prove that they intersect at an angle tan—149.

22. A circle passes through the points (-1, 1), (0, 6), and (5, 5).
Find the points on this circle the tangents at which are parallel to the
straight line joining the origin to its centre.

160. 7o shew that from any point there can be drawn
two tangents, real or imaginary, to a circle.

Let the equation to the circle be #* + y*=a? and let the
given point be (x;, 7). [Fig. Art. 161.]

The equation to any tangent is, by Art. 155,
Yy=mer+a J 1+ m?
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If this pass through the given point (x;, y,) we have

yl=nuq+aJl+M’ .................. (1).

This is the equation which gives the values of m corre-
sponding to the tangents which pass through (z,, v,).

Now (1) gives
th—ma,=a 1+ m,
i.e. P — 2maxyy, + mPx? = a® + a*m?,
t.e. m? (2,? —a®) — 2meyy, + ¥ —a’=0 ... (2).

The equation (2) is a quadratic equation and gives
therefore two values of m (real, coincident, or imaginary)
corresponding to any given values of x, and y,. For each
of these values of m we have a corresponding tangent.

. The roots of (2) are, by Art. 1, real, coincident or
imaginary according as
(2,,)* — 4 (2,2 — a?) (yl - ’) is positive, zero, or negative,
t.e. according as
@ (—a® + »” + y,’) is positive, zero, or negative,
t.e. according as ? + ¥y = a?

If x? + 3> a? the distance of the point (x,, y;) from
the centre is greater than the radius and hence it lies outside
the circle. -

If «®+ y®=d’ the point (z,, y,) lies on the circle and
the two coincident tangents become the tangent at (x,, y,).

If x® + y,* <a? the point (x,, y,) lies within the circle,
and no tangents can then be geometrically drawn to the
circle. It is however better to say that the tangents are

imaginary.
%t//ﬁl./ Chord of Contact. Def. If from any point
without a circle two tangents 7P and 7'Q be drawn to

e circle, the straight line P@ joining the points of
contact is called the chord of contact of tangents from 7'
To find the equation of the chord of comtact of tangenis
drawn to the circle @*+y*=a® from the external point
(1, 3)-
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Tet T be the point (z,, v,), and P and Q the points
(«, ¥') and (z”, y”) respectively.

The tangent at Pis
' +yy =a® ..... -.(1),
and that at @ is
' +yy' =a* ....... (2)

Since these tangents pass through
T, its coordinates (x,, y,) must satisfy
both (1) and (2).

Hence X +yy =at . 3),
and ox +yy =@ i (4).

The equation to PQ is then
xx, + Yy, = az. . ............... (5)

For, since (3) is true, it follows that the point (z, ¥'),
t.e. P, lies on (5).

Also, since (4) is true, it follows that the point (2", y”),
z.e. @, lies on (5).

Hence both P and @ lie on the straight line (5), t.e.
(B) is the equation to the required chord of contact.

If the point (w,, y,) lie within the circle the argument
of the preceding article will shew that the line joining the
. (imaginary) points of contact of the two (imaginary)
tangents drawn from (x,, y,) is @z, + yy, =

‘We thus see, since this line is always real, that we may
have a real straight line joining the imaginary points of
contact of two imaginary tangents.

162. Pole and Polar. Def. If through a point
P (within or without a circle) there be drawn any straight
line to meet the circle in @ and R, the locus of the point of
intersection of the tangents at @ ‘and R is called the polar
of P; also P is called the pole of the polar.

In the next article the locus will be proved to be a
straight line.
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163. 7o find the equation to the polar of the point
(%1, 41) with respect to the circle a* + y*=a’.

Let QR be any chord drawn through 2P and let the
tangents at ¢ and R meet in the point 7’ whose coordinates
are (h, k).

Hence QR is the chord of contact of tangents drawn
from the point (, k) and therefore, by Art. 161, its
equation is xh + yk=d’

Since this line passes through the point (z;, y,) we

have
oh+yk=a....ccoooeiinn.. (1).

Since the relation (1) is true it follows that the
variable point (k, k) always lies on the straight line whose
equation is

Hence (2) is the polar of the point (z,, ¥,).

In a similar manner it may be proved that the polar of
(zy, ) with respect to the circle

@ +y+ 2%+ 2fy+c=0
is axy, + Yy +g (@ +x) +f (y+y,) + ¢=0.

164. The equation (2) of the preceding article is the
same as equation (5) of Art. 161. If, therefore, the point
(;, y,) be without the circle, as in the right-hand figure,
the polar is the same as the chord of contact of the real
tangents drawn through (z;, v,).

If the point (x,, ¥,) be on the circle, the polar coincides
with the tangent at it. (Art. 150.)
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If the point (x,, y;) be within the circle, then, as in
Art. 161, the equation (2) is the line joining the (imaginary)
points of contact of the two (imaginary) tangents that can
be drawn from (x,, ¥,). ’

‘We see therefore that the polar might have been
defined as follows :

The polar of a given point is the straight line which
passes through the (real or imaginary) points of contact of
tangents drawn from the given point; also the pole of any
straight line is the point of intersection of tangents at the
points (real or imaginary) in which this straight line meets
the circle.

165. Geometrical construction for the polar of a point.
The equation to OP, which is the line joining (0, 0) to
(2015 ), is

Also the polar of P is
XX+ YYy=a® i 2).

By Art. 69, the lines (1) and (2) are perpendicular to
one another. Hence OP is perpendicular to the polar
of P.

Also the length OP= ;;/1;312+ v,
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and the perpendicular, ON, from O upon (2)

a2
o

Hence the product ON. OP =a®

The polar of any point P is therefore constructed thus :
Join OP and on it (produced if necessary) take a point N

such that the rectangle ON. OP is equal to the square of
the radius of the circle.

Through X draw the straight line LL' perpendicular to
OP; this is the polar required.

[It will be noted that the middle point N of any chord LL’ lies on
the line joining the centre to the pole of the chord.]}

166. 7o find the pole of a given line with respect to
any circle.

Let the equation to the given line be
Ac+By +C=0................... (1).
(1) Let the equation to the circle be
| #ayis
and let the required pole be (x;, ;).

Then (1) must be the equation to the polar of (x,, ¥,),
.t.e. it is the same as the equation

@YY~ A= 0 o @)
Comparing equations (1) and (2), we have

Y% _ - a?
4B ¢
4 B
so that wI:_Z'aB and yI:—-CaF.
The required pole is therefore the point
A 2 'B 2 -~
(‘0“"0“)- )

(2) Let the equation to the circle be
2+ %+ 2g% + 2fy + ¢ =0.
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If (x,, ) be the required pole, then (1) must be

equivalent to the equation
T, +y?/l+g(x+zl) +f(y+y.)+c=0, (Al’t 163),

.e. (2, +9)+y i+ +gx, +f, +e=0...... (3).

Comparing (1) with (3), we therefore have

g S gmrSnte
A B ¢ ’

By solving these equations we have the values of x,

and y,.

Bx. Find the pole of the straight line

9 +y-28=0...........ccocoiiii 1)
with respect to the circle

2024 23— Bz 4By - T=0...oooorrrrrernnnn. @.

If (x,, y,) be the required point the line (1) must coincide with the
polar of (z,, y,), whose equation is

202+ 2yy, — §(z+2) +(y +91) - 7=0,
i.e. z (4z) - 8) +y (dy, +6) — 3z + by, - 14=0........... 3)-
Since (1) and (3) are the same, we have
gz_l-_3=4y,+5 _ —38z+5y,-14
9 1 - -28 :
Henoce z,=9%,+12,
and 3z, - 117y, =126.

Solving these equations we have z,=3 and y,= -1, =0 that the
required point is (3, - 1).

167. If the polar of a point P pass through a point T,
then the polar of T passes through P.

Let P and 7 be the points (z,, ) and (z,, y,) re-
spectively. (Fig. Art. 163.)

The polar of (x,, %) with respect to the circle
2 +y*=a?js
@z, +yy, = a’.
This stralght line passes through the point 7' if
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Since the relation (1) is true it follows that the point
(%1, ), t.e. P, lies on the straight line xx,; + yy, = a?, which
is the polar of (x,, ¥s), t.e. 7', with respect to the circle.

Hence the proposition.

Cor. The intersection, 7', of the polars of two points,
P and @, is the pole of the line P@Q.

168. To find the length of the tangent that cam be
drawn from the point (x,, y,) to the circles

(1) @?+y*=ad’,
and (2) «*+9*+29x+ 2y +¢=0.
If 7 be an external point (Fig. Art. 163), 7'Q a tangent
and O the centre of the circle, then 7'Q0 is a right angle

and hence
T¢*= 01 - 0@

(1) If the equa.tlon to the circle be a* + y*=a? O is the
origin, 0T = 2 + %, and 0@Q*=da>

Hence TQ* =2+ y,? — a*
(2) Let the equation to the circle be
2+ Y+ 29z + 2fy + ¢ =0,
i.e. x+9)?+@y+Sf)P=g+"—c
In this case O is the point (— g, —f) and
0@* = (radius)®*=g* + f? —c.
Hence O =[z,— (—g)I*+[v,—(—=NF (Art. 20).

=@+ @
Therefore 7Q*=(m, +9)* + (4, +/)* — (9" +/* <)
=&+ 9"+ 29 + 2y, + .

In each case we see that (the equation to the circle
being written so that the coefficients of 2? and 3* are each
unity) the square of the length of the tangent drawn to the
circle from the point (z;, ¥,) is obtained by substituting «,
and g, for the current coordinates in the left-hand member
of the equation to the circle.

*169. 7o find the equation to the pair of tangents that
cam be drawn from the point (x,, y,) to the circle a* + y* = a®.
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Let (%, k) be any point on either of the tangents from
(1, 3)-

Since any straight line touches a circle if the perpen-
dicular on it from the centre is equal to the radius, the
perpendicular from the origin upon the line joining (), ;)
to (k, k) must be equal to a.

The equation to the straight line joining these two
points is

Y—h= :(“"‘“’l)r
.e. y (h—2)—x (k—y,) + ke, — hy, =0.
Hence —&:Ahy‘

el

J—zy+ =gy
s that  (kmy—hy,)'=a*[(h— =) + (k— )
Therefore the point (4, k) always lies on the locus
@y —=y)=a'[(z -2l + @y —u)] ... (1):
Thxs therefore is the required equation.
The equation (1) may be written in the form
2 (9 - o) + 9 (2" — @) — a* (=" + 91")
= 2xyxy, — 2a’xx, — 2a%yy,,
se (2 +7—a) (z2 +y,' — a?) =2’x? + 4y, + @t + 2xyxyy,
) — 2a%cx, — 20°yy, = (2o, + Yy, — @) ...l (2).
%#170. In a later chapter we shall obtain the equation to the pair

of tangents to any curve of the second degree in a form analogous
to that of equation (2) of the previous article.

Similarly the equation to the pair of tangents that can be
drawn from (z,, y;) to the circle

-+ -g)=a* -~
s {(=-f)+ -0 -0} {5+ - 9 - a7}
r - =HE-NE-NHE-9)h-9) -t
If the equation to the circle be given in the form

2+ 2+ 29z +2fy +¢c=0
the equation to the tangents is, similarly,

(@ + 92+ 292 + 2fy + ¢) (2,2 +y,2 + 292, + 2fy, +¢)
=[z2,+yy, +9 (z+2)) +f (Y +91) +cP......(2)-
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EXAMPLES. XIX.

Find the polar of the poin{
1. (1, 2) with respect to the circle 22 +y2=1.
2. (4, - 1) with respeot to the circle 222+ 2y?=11.
3. (-2, 3) with respect to the circle
x2+y3 -4z - 6y +5=0.
4, (5, —3) with respect to the circle
8234+ 3y3- Tz +8y - 9=0.
5. (a, —b) with respect to the circle
22+ y?+2az - 2by + a? - b2=0.
Find the pole of the straight line
8. z+2y=1 with respect to the circle 22+ y2=5.
7. 2z-y=6 with respect to the circle 522+ 5y*=9
8. 2z+y+12=0 with respect to the circle
284y -4dx+3y -1=0.
9. 48z - 54y + 53=0 with respect to the circle
322+ 3y%+ 5z - Ty +2=0.
10. az+by+3a%+3b2=0 with respect to the circle
2% +y2+ 2ax + 2by = a? + b2.
Tangents are drawn to the circle 2?+y?=12 at the points

11.
where it is met by the circle 23+ y*- 5z + 3y — 2=0; find the point of
intersection of these tangents.

12. Find the equation to that chord of the circle z*+y2=81 which
is bisected at the point (-2, 3), and its pole with respect to the circle.
13. Prove that the polars of the point (1, — 2) with respect to the
circles whose equations are
22+ y*+6y+5=0 and 22+y2+2z+8y+5=0
coincide ; prove also that there is another point the polars of which
with respect to these circles are the same and find its coordinates.

14. Find the condition that the chord of contact of tangents from
the point (z’, y’) to the circle 22+ y?=a? should subtend & right angle
at the centre.

15. Prove that the distances of two points, P and @, each from
the polar of the other with respect to a circle, are to one another
as the distances of the points from the centre of the circle.

16. Prove that the polar of a given point with respect to any one
of the circles 22+ y* - 2kz + c?=0, where % is variable, always passes
through a fixed point, whatever be the value of k.
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17. Tangents are drawn from the point (h, k) to the circle
x?+y2=a3; prove that the area of the triangle formed by them
and the straight line joining their points of contaoct is

a(h?+ K2 - ay! .
h2+ k3
Find the lengths of the tangents drawn

18. to the circle 2x%+2y2=3 from the point ( - 2, 3).

19. to the circle 323+ 3y?— 7z - 6y =12 from the point (6, - 7).

20. to the circle 22+ 32+ 2bz — 303=0 from the point

(a+b, a-b).
21. Given the three circles
22+y3-16z+60=0,
3224 3y2 - 36z +81=0,
and a3+y%- 16z - 12y +84=0,
find (1) the point from which the tangents to them are equal in
length, and (2) this length.

22. The distances from the origin of the centres of three circles
23 +y?—2\r=c? (where ¢ is a constant and A a variable) are in
geometrical progression; prove that the lengths of the tangents drawn
to them from any point on the cirele 22+ y2=c2are also in geometrical
progression.

23. Find the equation to the pair of tangents drawn

(1) from the point (11, 3) to the circle z? +y3=65,
(2) from the point (4, 5) to the circle
22242y -8z +12y +21=0.

171. To find the general equation of « circle referred
to polar coordinates. .

Let O be the origin, or pole, OX the initial line, C the
centre and a the radius of the
circle. Q

Let the polar coordinates of C
be R and a«, so that OC =R and

¢ X0C =a.

Let a radius vector through O
at an angle @ with the initial line /
cut the circle in P and Q. Let g
OP, or 0Q, be r.

L. 10
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Then (7'rig. Art. 164) we have
CP?=0C*+ OP*—20C . OP cos COP,
t.e. a*=R?+ 12— 2Rrcos (0 —a),
e 72—2Rrcos (0 —a)+ R*—a*=0............ 1)
This is the required polar equation.

173. Particular cases of the general equation in polar coordinates.

(l) Let the initial line be taken to go through the centre C. Then
0, and the equation becomes

72—~ 2Rr co8 0 + R? - a*=0.
(2) Let the pole O be taken on the circle, so that
R=0C=a.
The general equation then becomes
72 —2arcos (- a)=0,
i.e r=2acos (0 - a).

(3) Let the pole be on the circle and also let the initial line pass
through the centre of the circle. In this case

a=0, and R=a. i

The general equation reduces then to the ,\
simple form r=2a cos 6.
This is at once evident from the figure. o A
For, if 0CA be a diameter, we have
OP=04cos¥,

i.e r=2acosd.

173. The equation (1) of Art. 171 is a quadratic
equation which, for any given value of 6, gives two
values of 7. These two values in the figure are OF and
0Q.

If these two values be called », and 'rg, we have, from
equation (1),

77y = product of the roots=R?-d?
1.6 OP.0Q=R*-a’

The value of the rectangle OP.O0Q is therefore the

same for all values of 6. It follows that if we drew any

other line through O to cut the circle in P, and @, we -
should have OP. 0Q = OP,. 0Q,.

This is Euec. 111. 36, Cor.

e —— ..
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174. Find the equatwn to the chord joining the points on the circle
r=2a cos 6 wh ial angles are 0, and 0,3, and deduce the equation
to the tangent at the point 6,.

The equation to any straight line in polar coordinates is (Art. 88)
P=7008(0—a) .ccoooeevrimnnnniinnnnns (1).

ifathis pass through the points (2a cos 4,, 6,) and (2a cosd,, 6.), we
ve

2a cos 6, cos (6, — a)=p=2acos 0,008 (f;—a)......... (2).
Hence cos (20, — a) + cos a =008 (20; — a) +cos a,
ie. 20, - a= — (20,-a),
since 0, and 6, are not, in general, equal.
Hence a=0,+6,,

and then, from (2), p=2a cos 6, cos 8,.
On substitution in (1), the equation to the required chord is
7c08 (0 —0,-0,)=2acos86,co80; ............. o (3).

The equation to the tangent at the point 6, is found, as in
Art. 150, by putting 6,=6, in equation (3).

We thus obtain as the equation to the tangent
7008 (0 — 26,) =2a cos? 6, .

As in the foregoing article it could be shewn that the equation to
the chord joining the points 6, and 6, on the circle r=2a cos (6 - v) is

rcos[0 — 0, — 6,+y]=2a cos (6, — ) cos (6, —
and hcence that the equation to the tangent at the point 6, is
' 708 (0 — 26, +7) =2a cos? (6, — ).

EXAMPLES. XX.

1. Find the coordinates of the centre of the circle
r=A cos § + B sin 0.

9. Find the polar equation of a circle, the initial line being a
tangent. What does it become if the origin be on the circumference ?

3. Draw the loci
(1) r=a; (2) r=asinf; (3) r=acosd; (4) r=asechd;
(5) r=acos(0-a); (6) r=asec(fd-a).

4. Prove that the equations r=acos (0 -a) and r=bsin (§ -a)
represent two circles which cut at right es.

5. Prove that the equation 12 cos 6 —ar cos 20 — 242 cos §=0
represents a straight line and a circle.

10—2
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6. Find the polar equation to the circle described on the straight
line joining the points (a, ) and (b, B) as diameter.

7. _Prove that the equation to the circle described on the straight
line joining the points (1, 60°) and (2, 30°) as diameter is
72 —r[cos (8 - 60°) + 2 cos (6 — 30°)]+4/3=0.

8. Find the condition that the straight line
%_: acos §+bsind

may touch the circle r=2¢ cos 4.

175. To find the general equation to a circle referred to
oblique axes which meet at an angle w.

Let C be the centre and a the radius of the circle.. Let
the coordinates of C' be (%, k) so
that if CM, drawn parallel to the Y
axis of y, meets OX in M, then P
OM=h and MC =k.
Let P be any point on the
circle whose coordinates are x and
y. Draw PN, the ordinate of P, /.

and CL pa.ra.llel to 0X to meet 0 M N X .
PN in L.

Then CL=MN=0N-0OM=x-h,
and LP=NP—-NL=NP-MC=y-k.

Also (CLP=:0NP=180°-:PNX=180°-o.
Hence, since CL?*+ LP*—2CL.LPcosCLP =a?,
we have (x—h)24 (y —k)2+2 (x—h) (y — k) cosw=a?,
te. 2+y + 2xy cos w — 2x (h+ kcosw) - 2y (k+ hcos w)
+ R+ B + 2hk cos w =a’.
The required equation is therefore found.

176. As in Art. 142 it may be shewn that the
equation
2+ 2wy cos w+ Y + 292+ 2fy + ¢ = 0

represents a circle and its radius and centre found.
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Bx. If the axes be inclined at 60°, prove that the equation
Bray+yd-4r-5y-2=0...................n. 1
represents a circle and find its centre and radius.

If w be equal to 60° so that cos w=4%, the equation of Art. 175
mes

B+zy+y -2 (2h+k) -y (2k +h)+ k2 + 22+ hk=a®.
This equation agrees with (1) if

and h2+k*+ hk - a?= -2
. Solving (2) and (8), we have k=1 and k=2. Equation (4) then
gives

a*=h2+k*+hk+2=9,
so that a=3.

The equation (1) therefore represents a circle whose centre is the
point (1, 2) and whose radius is 3, the axes being inclined at 60°.

EXAMPLES. XXI.

Find the inclinations of the axes so that the following equations
may represent circles, and in each case find the radius and centre ;

1. 2*-zy+y*-29z-2fy=0.

2. z2+./3zy+y?—4r-6y+5=0.

3. The axes being inclined at an angle w, find the centre and
radius of the circle

224 2y cos w+y* ~ 29x - 2fy =0.

4, The axes being inclined at 45°, find the equation to the circle
whose centre is the point (2, 3) and whose radius is 4.

5. The axes being inclined at 60°, find the equation to the circle
whose centre is the point (- 3, —5) and whose radius is 6.

6. Prove that the equation to a circle whose radius is a and
which touches the axes of coordinates, which are inclined at an angle
w, i8

224 2y cos w+y? — 2a (z +y) cot;-’+a2 cotﬂgzo.

7. Prove that the straight line y=mz will touch the circle

22+ 2xy cos w+ Y%+ 29z +2fy +¢c=0
if (9 +fm)?=c (1+2m cos w+m?).

8. The axes being inclined at an angle w, find the equation to the

circle whose diameter is the straight line joining the points
(', ¥') and (2", y").



150 COORDINATE GEOMETRY.

Coordinates of a point on a circle expressed in
terms of one single variable.

177. 1If, in the figure of Art. 139, we put the angle
MOP equal to a, the coordinates of the point P are easily
seen to be a cos a and a sin a.

These equations clearly satisfy equation (1) of that
article.

The position of the point P is therefore known when
- the value of a is given, and it may be, for brevity, called
‘ the point a.”

With the ordinary Cartesian coordinates we have to
give the values of fwo separate quantities 2’ and y’ (which
are however connected by the relation ' =,/a*—y?) to
express the position of a point P on the circle. The
above substitution therefore often simplifies solutions of
problems.

178. To find the equation to the straight line joining
two points, a and B, on the circle o + y* = a®

Let the points be P and @, and let ON be the perpen-
dicular from the origin on the straight line PQ ; then ON
bisects the angle PO, and hence

¢t XON=3(.XO0P + :X0Q)=1}(a+P).

a-pB

Also 5

The equation to P@Q is therefore (Art. 53),
.'z:cosi;ﬂ+ ysin—a ;B =@ Cos - _B

If we put B=a we have, as the equat,lon to the tangent
at the point a,
xcosa + ysina=a.
This may also be deduced from the equation of Art. 150
by putting 2’ =acosa and y' =a sin a.

179. If the equation to the circle be in the more
general form

@—W) + (y— k) =a’, (Art. 140),
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we may express the coordinates of P in the form
(A + acosa, k+ asina).
For these values satisfy the above equation.
Hére a is the angle LCP [Fig. Art. 140].

The equation to the straight line joining the points a and
B can be easily shewn to be

(x—h) cos 2 ; ﬁ+(y—k)sing'—;£=acos ‘—z—_ﬁ,

and so the tangent at the point a is
(x—h)cosa + (y — k) sina =a.

*180. Common tangents to two circles. If O,
and O, be the centres of two circles whose radii are », and
75, and if one pair of common tangents meet 0,0, in 7'
and the other pair meet it in 7', then, by similar triangles,
o,T, » O,T .
ﬁoﬁ ’—.: = b-:—f:; The points 7', and 7', therefore
divide 0,0, in the ratio of the radii.

The coordinates of 7, having been found, the corre-
sponding tangents are straight lines passing through it,
such that the perpendiculars on them from O, are each
equal to . So for the other pair which pass through 7',

we have

Bx. Find the four common tangents to the circles
22 +y2-222+4y+100=0, and 2%+y?+23x -4y - 100=0.
The equations may be written
(z-11)*+ (y +2)*=52 and (z+11)*+ (y - 2)2=152
The centre of the first is the point (11, —2) and its radius is 5.
The centre of the second is the point (- 11, 2) and its radius is 15.

Then T, is the point dividing internally the line joining the centres
in the ratio 5 : 15 and hence (Art. 22) its coordinates are
16x11+5x(-11) an 15x(-2)+5x2
15+5 15+5 ’
that is, T, is the point (3, - 1).
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Similarly 7, is the point dividing this line externally in the ratio
5 :15, and ence its coordinates are

15x111;f;<(—11) and 15x(l,—52_);5x2’
that is, T, is the point (22, -4). ‘L'{ N ‘)
Let the equation fo either of the tangents passing through T, be
YRS Y 2§ 3 SO (1).

Then the perpendicular from the point (11, —2) on it is equal to
+ 5, and hence

m (11 ) - (=2+1)_

NJ1+m?
On solving, we have m= — 34t or §. ‘
The required tangents through T', are therefore Ly d
242+ Ty =125, and 4z — 3y =25. e
Similarly the equations to the tangents through T,
Y+4=m(2-22) .cccoovnniiiiiniiiiins 2),
where m (11 -22) - )=(=2+4) 2+4) +5.
:\/ 14+m?
On solving, we have m=5 or —$.

On substitution in (2), the required equations are therefore
Tz — 24y =250 and 3z + 4y =50.
The four common tangents are therefore found.

181. We shall conclude this chapter with some mis-
cellaneous examples on loci.

Bx. 1. Find the locus of a point P which moves so that its distance
Jrom a given point O is always in a given ratio (n : 1) to its distance
Jfrom another given point A.

Take O as origin and the direction of 04 as the axis of z. Let
the distance 04 be a, so that 4 is the point (a, 0).

If (=, y) be the coordinates of any position of P we have

OP2=n2. AP?,
Le. ad+yi=n2[(z - afi+ 97,
i.e. (22 +9?) (n? - 1) - 2an?z + n?a®=0.................. (1).

Hence, by Art. 143, the locus of P is a circle.

Let this circle meet the axis of « in the points C and D. Then 00
and OD are the roots of the equation obtained by putting y equal to
zero in (1).

Hence oc="%

n+1 1
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* We therefore have

a a
(L«i_.'"—_i_1 and AD:E'
Hence —OC—O—D=n
CA™ AD™ ™

The points C and D therefore divide the line O in the given ratio,
and the required circle is on CD as diameter.

Bx. 3. From any point on one given circle tangents are drawn to
another given circle; prove that the locus of the middle point of the
chord of contact is a third circle.

Take the centre of the first circle as origin and let the axis of =

lt);:ss through the centre of the second circle. Their equations are
en

+y?=a? ... 1),
and (T—c)2+y?=b% ....ccociiiiinin (2),

where a and b are the radii, and ¢ the distance between the centres, of
the circles.

Any point on (1) is (a cos 8, a sin 8) where @ is variable. Its chord
of contact with respect to (2) is
(x-c)(acosf—c)+yasind=>b%.................. (3).

The middle point of this chord of contact is the point where it is
met by the perpendicular from the centre, viz. the point (c, 0).
The equation to this perpendicular is (Art. 70)
—(r-c)asinf+(acosf-c)y=0 ............... (4).
Any equation deduced from (3) and (4) is satisfied by the coordi-
nates of the point under consideration. If we eliminate 6 from them,
we shall have an equation always satisfied by the coordinates of the

point, whatever be the value of . The result will thus be the equation
to the required locus.

Solving (3) and (4), we have

asinf=

yi+(z-c)?’
b2 (z-c)
and « cos&-c:yﬁ(;b)r
2 (2 —
so that a0050=c+_2_(‘t_c)2_
Hence y+(z-o)
z-c bé

2 42 2 2 - 20 =2 2
a?=a?cos? 0 + a?sin? § =2 + 2cb Fr@—op + Fr@—op
The required locus is therefore

(a% - ¢ [y%+ (x - ¢)?]=2cb? (z — c) + b4
This is a circle and its centre and radius are easily found.
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Bx. 8. Find the locus of a point P which is such that its polar with
respect to one circle touches a second circle.

Taking the notation of the last article, the equations to the two
circles are

and (=) +y2=b% .o (2).

Let (h, k) be the coordinates of any position of P. Its polar with
respect to (1) is

B T (3)
Also any tangent to (2) has its equation of the form (Art. 179)
(z—-c)eosf+ysinf=b ..................... (4)-

If then (3) be a tangent to (2) it must be of the form (4).

cosf sind _ccosfd+b
Therefore s = i

These equations give

cos 6 (a? — ch) =bh, and sin 6 (a? - ch)=bk.
Squaring and adding, we have
(@@= ch)P=b2 (R4 1) oo (5).
The locus of the point (k, k) is therefore the curve
b2 (22 +y*) =(a?- cz).
. Aduur The condition that (3) may touch (2) may be otherwise
ound.

For, as in Art. 153, the straight line (3) meets the circle (2) in the
points whose abscisse are given by the equation

k2 (z - c)*+ (a%- hr)2 =022,

i.e. 22 (h2+ k?) — 2z (ck? + a®h) + (K22 + at - b%k?) =0.

The line (3) will therefore touch (2) if

(ck®+a®h)2=(h%+ &k?) (k%2 + a* - b2K2),

i.e if 82 (h2+ %) =(ch - a?)?,
which is equation (5).

Bx. 4. O is a fized point and P any point on a given circle; OP
i8 joined and on it a point Q is taken so that OP.0Q=a constant

quantity k%; prove that the locus of Q is a circle which becomes a
straight line when O lies on the original circle.
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Let O be taken as pole and the line through the ocentre C as the
initial line. Let OC=d, and let the
radius of the circle be a. 7

The equation to the cirele is then ] ¢

a?=7r2+d%-2rdcos g, (Art. 171), l'e) d C
where OP=r and £ POC=6. U
Let 0Q be p, so that, by the given

condition, we have rp=4%2 and hence r=— .
P

Substituting this value in the equation to the circle, we have

] k?d
a=—; +d®-2-—cCo80........................ 1),
5 . )

8o that the equation to the locus of Q is

kd k¢
#—232_—1111'0050_—;2-_? ................... (2).

But the equation to a circle, whose radius is a’ and whose centre is
on the initial line at a distance d’, is

- 2rd’ cosf=a—-d".............cu......... (3).
Comparing (1) and (2), we see that the required locus is a circle,
such that . ”
-— K d 2 e
d’-m and a?-d?= ~Foar

k4 d? kta?
n__" |2 _1]=_"% _
Hence a _d’—a’[d“—a? 1]_(1'2_“2)2.

2
The required locus is therefore a circle, of radius d_zk__aaz , whose

centre is on the same line as the original centre at a distance Foa
from the fixed point.
When O lies on the original circle the distance d is equal to a, and
the equation (1) becomes k2=2dr cos 6, .i.e., in Cartesian coordinates,
K
T=55"
" 321 this case the required locus is a straight line perpendicular

When a second curve is obtained from a given curve by the above
geometrical process, the second curve is said to be the inverse of the
first curve and the fixed point O is called the centre of inversion.

The inverse of a circle is therefore a circle or a straight line
acoording as the.centre of inversion is not, or is, on the circumference
of the original circle.
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Bx. 8. PQ is a straight line drawn through O, one of the common
points of two circles, and meets them again in P and Q; find the locus of
the point S which bisects the line PQ.

Take O as the origin, let the radii of the two circles be R and R,
and let the lines joining their centres to O make angles a and a’ with
the initial line. :

The equations to the two circles are therefore, {Art. 172 (2)},

r=2Rcos (0 -a), and r=2R’cos (0 - a’).

Hence, if S be the middle point of PQ, we have

208=0P+ 0Q=2Rcos (6 - a) + 2R’ cos (¢ — a').
The locus of the point S is therefore
r=Rcos (§ — a) + R’ cos (6 —a’)
=(Rcosa+ R’ cosa’) cos § + (R sin a + R’sin a’) sin @

=2R”C0OB(0 = @") ceeeuriiiniiiin it @),
where 2R"” cosa”=Rcosa+ R’ cosa’,
and 2R"”sina” =Rsina+ R'sin a’.
Hence R"=% \/T2+ R?®+2RR’cos (a - '),
Rsgin a+ R'sin o’
”__ gttt it dtsnih
and tana " Rcosa+R cosa’”

From (1) the locus of S is a circle, whose radius is R”, which
passes through the origin O and is such that the line joining O to its
centre is inclined at an angle a” to the initial line.

EXAMPLES. XXII

1. A point moves so that the sum of the squares of its distances
from the four sides of a square is constant; prove that it always lies
on a circle,

2. A point moves so that the sum of the squares of the perpendi-
culars let fall from it on the sides of an equilateral triangle is constant;
prove that its locus is a circle.

3. A point moves so that the sum of the squares of its distances
from the angular points of a triangle is constant; prove that its locus
is a circle.

4, Find the locus of a point which moves so that the square of
the tangent drawn from it to the circle 22+ y2=a? is equal to ¢ times
its distance from the straight line lz +my +n=0.

5. Find the locus of a point whose distance from a fixed point is
in a constamt ratio to the tangent drawn from it to a given circle.

—
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6. Find the locus of the vertex of a triangle, given (1) its base and
the sum of the squares of its sides, g) its base and the sum of m times
the square of one side and n times the square of the other.

7. A point moves so that the sum of the squares of its distances
from n fixed points is given. Prove that its locus is a circle.

8. Whatever be the value of a, prove that the locus of the inter-
section of the straight lines

zcosa+ysina=a and zsina-ycosa=b
is a circle.

9. From a point P on a circle perpendiculars PM and PN are
drawn to two radii of the circle which are not at right angles ; find
the locus of the middle point of MN.

10. Tangents are drawn to a circle from a point which always
lies on & given line; prove that the locus of the middle point of the
chord of contact is another circle,

11. Find the locus of the middle points of chords of the circle
«2+y%=a? which pass through the fixed point (&, k).

12. Find the locus of the middle points of chords of the circle
%+ y?=a? which subtend a right angle at the point (c, 0).

13. Ois a fixed point and P any point on a fixed circle; on OP
is taken a point Q such that OQ is in a constant ratio to OP ; prove
that the locus of Q is a circle.

14. Ois a fixed point and P any point on a given straight line;
OP is joined and on it is taken a point @ such that OP.0Q=Fk?;
prove that the locus of Q, i.e. the inverse of the given straight line
with respect to O, is a circle which passes through O.

15. One vertex of a triangle of given species is fixed, and another
moves along the circumference of a fixed circle ; prove that the locus
of the remaining vertex is a circle and find its radius.

16. O is any point in the plane of a circle, and OP,P, any chord
of the circle which passes through O and meets the circle in P, and
P,. On this chord 18 taken a point Q such that OQ is equal to (1) the
arithmetic, (2) the geometric, and (3) the harmonic mean between OP,
and OP,; in each case find the equation to the locus of Q.

17. Find the locus of the point of intersection of the tangent to
any circle and the perpendicular let fall on this tangent from a fixed
point on the circle.

18. A circle touches the axis of = and cuts off a constant length
21 from the axis of y ; prove that the equation of the locus of its centre
is y2 - z2=1 cosec? w, the axes being inclined at an angle w.
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19. A straight line moves so that the product of the perpendi-
culars on it from two fixed points is constant. Prove that the locus
of the feet of the perpendiculars from each of these points upon the
straight line is a circle, the same for each.

20. O is a fixed point and 4P and BQ are two fixed parallel
straight lines; BOA is perpendicular to both and POQ is a right
angle. Prove that the locus of the foot of the perpendicular drawn
from O upon PQ is the circle on 4B as diameter.

21. Two rods, of lengths a and b, slide along the axes, which are
rectangular, in such a manner that their ends are always concyclic ;
prove that the locus of the centre of the circle passing through these
ends is the curve 4 (2% - y%) =a?- b2

22. Shew that the locus of a point, which is such that the
tangents from it to two given concentric circles are inversely as the
radii, is a concentric circle, the square of whose radius is equal to the
sum of the squares of the radii of the given circles.

23. Shew that if the length of the tangent from a point P to the
circle 22+ y2=a? be four times the length of the tangent from it to the
circle (z — a)?+y2=a?, then P lies on the circle

152%+ 15y% - 32ax +a%=0.

Prove also that these three circles pass through two points and that
the distance between the centres of the first and third circles is
sixteen times the distance between the centres of the second and
third circles.

24. Find the locus of the foot of the perpendicular let fall from
the origin upon any chord of the circle 22+ y2+ 2gz + 2fy + ¢ =0 which
subtends a right angle at the origin.

Find also the locus of the middle points of these chords.

25. Through a fixed point O are drawn two straight lines OPQ
and ORS to meet the circle in P and @, and R and S, respectively.
Prove that the locus of the point of intersection of PS and QR, as also
that of the point of intersection of PR and @S, is the polar of O with
respect to the circle.

26. 4, B, C,and D are four points in a straight line; prove that
the locus of a point P, such that the angles APB and CPD are equal,
is a cirele.

27. The polar of P with respect to the circle 22+ y2=a? touches
the circle (- a)®+ (y — 8)2=b2; prove that its locus is the curve given
by the equation (az+ By — a?)?=0% (2% +y?).

28. A tangent is drawn to the circle (z - a)?+y?*=>b2and a perpen-
dicular tangent to the circle (z+a)*+y*=c?; find the locus of their
point of intersection, and prove that the bisector of the angle between
them always touches one or other of two fixed circles.
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29. In any circle prove that the perpendicular from any point of
it on the line joining the points of contact of two tangents is a mean
proportional between the perpendiculars from the point upon the two
tangents.

30. From any point on the circle

z:+y’+29z+2fy+c=0
tangents are drawn to the circle
23 +y3+ 392+ 2fy +csina+ (92 + /%) 008%a=0;
prove that the angle between them is 2a.
31. The angular points of a triangle are the points
(acosa, asina), (acosB, asing), and (acosy, asiny);
prove that the coordinates of the orthocentre of the triangle are
a(cosa+cosB+cosy) and a(sina+sin B+siny).

Hence prove that if 4, B, C, and D be four points on a circle the
orthocentres of the four triangles 4BC, BCD, CDA, and DAB lie on
a circle.

32. A variable circle passes through the point of intersection O
of any two straight lines and cuts off from them portions OP and 0Q
such that m.OP+n.0Q is equal to unity; prove that this circle
always passes through a fixed point.

33. Find the length of the common chord of the circles, whose
equations are (z - a)?+y?=a? and 2*+ (y - b)*= b3, and prove that the
equation to the circle whose diameter is this common chord is

(a?+ b?%) (2% + y?) =2ab (bz + ay).

34. Prove that the length of the common chord of the two circles
whose equations are

(z-a)?+(y-b)*=c? and (z-0)2+(y—a)’=c?
is VAT @=op.
Henoe find the condition that the two circles may touch.
35. Find the length of the common chord of the circles
2% +y3? - 2az - 4ay - 4a*=0 and 22+y?- 3az+ 4ay =0.

Find also the equations of the common tangents and shew that
the length of each is 4a.

36. Find the equations to the common tangents of the circles
(1) 2*+y?-2z-6y+9=0 and z2+y?+6z-2y+1=0,
(2) 2*+y*=c? and (v -a):+y?=12



CHAPTER IX.

SYSTEMS OF CIRCLES.

(This chapter may be omitted by the student on a first
l_'ea.ding of the subject.]

182. Orthogonal Circles. Def. Two circles are
said to intersect orthogonally when

the tangents at their points of P
intersection are at right angles. 4 _7\a;
If the two circles intersect at & 9.
1 2

P, the radii 0,P and O0,P, which
are perpendicular to the tangents
at P, must also be at right angles.

Hence 0,0;2 = 0,P* + 0,P%,

i.e. the square of the distance between the centres must be
equal to the sum of the squares of the radii.

Also the tangent from O, to the other circle is equal to
the radius a,, t.e. if two circles be orthogonal. the length of
the tangent drawn from the centre of one circle to. the
second circle is equal to the radius of the first. . |

Either of these two conditions will determine whether
the circles are orthogonal.
The centres of the circles N
22+ Y2 +292+2fy+c=0 and z*+y2+29'z+2f'y +¢'=0,

are the points (~g, —f) and (- g, ~f'); also the squares of their
radii are g%+ f2-c and g2+ f"2 -
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They therefore cut orthogonally if
(~9+)+(~F+fP=g +f3-c+ g +f -
i.e. if 299’ +2ff'=c+c.

183. Radical Axis. Def. The radical axis of
two circles is the locus of a point which moves so that the
lengths of the tangents drawn from it to the two circles are
equal.

Let the equations to the circles be .
P+ +292+2fy+c=0....o... 1),
and P+ +292+ 2 y+6,=0.(2),

and let (x;, ;) be any point such that the tangents from it
to these circles are equal.

By Art. 168, we have
@'+ Y+ 292+ Uy +e=a’+ ) + 293 + Y + o
t.e. 2z, (9 —q1) + 20 (f—1) +c—¢,=0.

But this is the condition that the point (x,, y,) should
lie on the locus

 22@-g)+ (S-S re—a=0....... 3)-
This is therefore the equation to the radical axis, and it
is clearly a straight line.

Tt is easily seen that the radical axis is perpendicular
to the line joining the centres of the circles. For these
centres are the points (—g, —f) and (-g,, —f}). The

“m” of the line joining them is therefore — —,
~5-(-9)
t.e. f—.’é
9= %
The “m” of the line (3) is — =%

f-A
The product of these two “ m’s” is — 1.

. Hence, by Art. 69, the radical axis and the line joining
the centres are perpendicular.

L. 11
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184. A geometrical construction can be-given
for the radical axis of two circles.

If the circles intersect in real points, P and @, as in
Fig. 1, the radical axis is clearly the straight line PQ.
For if 7 be any point on PQ and TR and 7'S be the
tangents from it to the circles we have, by Euc. 1. 36,

TR*=TP.1Q=1T8%

If they do not intersect in real points, as in the second
figure, let their radii be a, and a,, and let 7" be a point such
that the tangents TR and 7'S are equal in length.

Draw 70 perpendicula.r to 0,0,.

Since 'R2 = T'S3,
we have T0.? - O,R*=T0. — 0,5%,
e TO* + 0,0°—a2=T0* + 002 —aj,
ie. 0,00~ 002=a}—a}
e (0,0—- 00,) (0,0 + 00,) = a* —a,’,

a”’
_05%‘ =a constant quantity.

1V

Hence O is a fixed point, since it divides the fixed
straight line 0,0, into parts whose difference is constant.

Therefore, since 0,07 is a right angle, the locus of 7,
t.c. the radical axis, is a fixed straight line perpendicular to
the line joining the centres.

ie.  0,0—00,=
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185. If the equations to the circles in Art. 183 be
written in the form S=0 and §'=0, the equation (3) to
the radical axis may be written §—§ =0, and therefore
the radical axis passes through the common points, real or
imaginary, of the circles §=0 and §'=0.

In the last article we saw that this was true geometri-
cally for the case in which the circles meet in real points.

When the circles do not geometrically intersect, as in
Fig. 2, we must then look upon the straight line 70 as

passing through the imaginary points of intersection of the
two circles,

186. The radical axes of three circles, taken in pairs,
meet 1 a point.

Let the equations to the three circles be

N | N (1),
. =0 s (2),
and S"=0 i (3).

line

§-8=0......... e, (4)
* The radical axis of (2) and (3) is the straight line
S =8"=0 i (5).

If we add equation (5) to equation (4) we shall have the
equation of a straight line through their points of inter-
section.

Hence R Y | TP (6)
is a straight line through the intersection of (4) and (5).
But (6) is the radical axis of the circles (3) and (1).
Hence the three radical axes of the three circles, taken
in pairs, meet in a point.
This point is called the Radical Centre of the three
circles.

This may also be easily proved geometrically. For let
the three circles be called 4, B, and C, and let the radical
axis of 4 and B and that of B and C meet in a point O.

11—2
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By the definition of the radical axis, the tangent from O
to the circle 4 = the tangent from
O to the circle B, and the tangent
from O to the circle B =tangent
from it to the circle C.

Hence the tangent from O to
the circle 4 =the tangent from it
to the circle C, te. O is also a
point on the radical axis of the
circles 4 and C.

187. If 8=0 and S =0 be the equations of two circles,
the equation of amy <circle through their points of inter-
section 18 S=AS". Also the equation to any circle, such that
the radical axis of it and S=0 18 u=0,18 S+ Au=0.

For wherever §=0 and §'=0 are both satisfied the
equation §=AS’is clearly satisfied, so that §=AS" is some
locus through the intersections of =0 and §'= ,

Also in both § and §’ the coefficients of a? and 3? are
equal and the coefficient of xy is zero. The same statement
is therefore true for the equation S=AS'. Hence the
proposition.

Again, since % is only of the first degree, therefore in
S +Au the coefficients of 2* and y* are equal and the
coefficient of xy is zero, so that § + Au =0 is clearly a circle.
Also it passes through the 1ntersectlons of §=0and u=0.

EXAMPLES. XXIIL

Prove that the following pairs of circles intersect orthogonally :
1. #z2+y?*~2ax+c¢=0 and 2?+y3+2by - c=0. :
2. 23+y?-2ax+2by+c=0 and z%+y2+2bz+ 2ay — c=0.

3. Find the equation to the circle which passes through the origin
and cuts orthogonally each of the circles

22+y?-6x+8=0 and 23+y3-2z-2y=T.
Find the radical axis of the pairs of circles
4, 2+y?=144 and 22+y%- 162 +11y=0.
5. a?+y*-3x-4y+5=0 and 322+ 38y3- Tz +8y +11=0.
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6. 2*+y?—zy+6z-Ty+8=0 and 2¥+y?-zy-4=0,
the axes being inclined at 120°.

Find the radical centre of the sets of circles
7. 2*+y*+z+2y+3=0, z*+y’+2z+4y{-5=o,
and 23+y?-Tzx-8y-9=0.
8. (2-2+(y-3P=86, ' (s+3)1+(y+2)P=49,
and (z-4)2+(y+5)*=64.
9. Prove that the square of the tangent that can be drawn from
any point on one circle to another circle is equal to twice the product

of the perpendicular distance of the point from the radical axis of the
two circles, and the distance between their centres.

10. Prove that a common tangent to two circles is biseoted by the
radical axis,
11. Find the general equation of all circles any pair of which have
the same radical axis as the circles
22 +y%=4 and 23+y?+2z+4y=6.

12. Find the equations to the straight lines joining the origin to
the points of intersection of

23 +y3-4dx-2y=4 and 23+y?-2z -4y -4=0.

13. The polars of a point P with respect to two fixed circles meet
in the point Q. Prove that the circle on PQ as diameter passes
through two fixed points, and cuts both the given circles at right
angles.

14. Prove that the two circles, which pass through the two points
o, ﬂlsnd (0, — a) and touch the straight line y =mz + ¢, will cut ortho-
gonally if c3=a2 (2 +m?).

15. Find the locus of the centre of the circle which cuts two given
circles orthogonally.

16.. If two circles cut orthogonally, prove that the polar of any
. point P on the first circle with respect to the second passes through
the other end of the diameter of the first circle which goes through P.

Hence, (by considering the orthogonal circle of three circles as
the locus of a point such that its polars with respect to the circles
meet in a point) prove that the orthogonal circle of three circles,
given by the general equation is

z+9,, ¥Y+hH, ST+ fiy+e
40y, Y+Jfa, 9o+ Sy +cg=0.
Z+gge Y+ JSss 95T+ fy+oy
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188. Coaxal Circles. Def. A system of circles

. is said to be coaxal when they have a common radical axis,

i.e. when the radical axis of each pair of circles of the
system is the same.

To find the equation of a system of coaxal circles.

Since, by Art. 183, the radical axis of any pair of the
circles is perpendicular to the line joining their centres, it
follows that the centres of all the circles of a coaxal system

must lie on a straight line which is perpendicular to the
radical axis.

Take the line of centres as the axis of z and the radical
axis as the axis of y (Figs. L. and IL, Art. 190), so that O
is the origin.

The equation to any circle with its centre on the axis
of x is

P+ —29x+c=0.ccccieninnn... (1).

Any point on the radical axis is (0, y,).

The square on the tangent from it to the circle (1) is,
by Art. 168, y,* +c.

Since this quantity is to be the same for all circles of
the system it follows that ¢ is the same for all such circles ;
the different circles are therefore obtained by giving dif-
ferent values to g in the equation (1).

The intersections of (1) with the radical axis are then

“obtained by putting x = 0 in equation (1), and we have

y=+J-c

If ¢ be negative, we have two real points of intersection
asin Fig. L of Art. 190. In such cases the circles are said
to be of the Intersecting Species.

If ¢ be positive, we have two imaginary pomts of in-
tersection as in Fig. II.

189. ‘Limiting points of a coaxal system.

The equation (1) of the previous article which gives any
circle of the system may be written in the form

@-9) + 9= ¢~ o= WL
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It therefore represents a _ci_rile whose centre is the point
(9, 0) and whose radius is \/¢*— c.

This radius vanishes, t.e. the circle becomes a point-
circle, when g*=c¢, i.e. when g=+ Je.

Hence at the particular points (+ \/c, 0) we have point-
circles which belong to the system. These point-circles are
called the Limiting Points of the system.

If ¢ be negative, these points are imaginary.

But it was shown in the last article that when ¢ is
negative the circles intersect in real points as in Fig. I.,
Art. 190.

If ¢ be positive, the limiting points Z, and L, (Fig. IL.) are
real, and in this case the circles intersect in imaginary points.

The limiting points are therefore real or imaginary
according as the circles of the system intersect in imaginary
or real points. .

190. Orthogonal circles of a coaxal system.

Let 7 be any point on the common radical axis
of a system of coaxal circles, and let 7R be the tangent
from it to any circle of the system.

Fig. 1.

Then a circle, whose centre is 7" and whose radius is 7',
will cut each circle of the coaxal system orthogonally.
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[For the radius 7'R of this circle is at right angles to
the radius O, R, and so for its intersection with any other
circle of the system.]

X

Fig. IL.

Hence the limiting points (being point-circles of the
system) are on this orthogonal circle.

The limiting points are therefore the intersections with
the line of centres of any circle whose centre is on the
common radical axis and whose radius is the tangent from
it to any of the circles of the system.

Since, in Fig. L., the limiting points are imaginary these
orthogonal circles do not meet the line of centres in real
points. .

In Fig. TL they pass through the limiting points L,
and L,.

These orthogonal circles (since they all pass through two
points, real or imaginary) are therefore a coaxal system.

Also if the original circles, as in Fig. I., intersect in
real points, the orthogonal circles intersect in imaginary
points; in Fig. IT. the original circles intersect in imaginary
points, and the orthogonal circles in real points.

We therefore have the following theorem :

A set of coaxal circles can be cut orthogonally by another
set of coaxal circles, the centres of each set lying on the
radical axis of the other set; also one set is of the limiting-
point spectes and the other set of the other species.
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191. Without reference to the limiting points of the original
system, it may be easily found whether or not the orthogonal circles
meet the original line of centres.

For the circle, whose centre is 7 and whose radius is TR, meets
or does not meet the line 0,0, according as TR? is > or < T0%,

i.e. according as T0,2-O0,R? is Z TO0?
i.e. according as T0%+00,*- O,R%is Z TO?
i.e. according as 00, is Z O,R,

i.e. according as the radical axis is without, or within, each of the
circles of the original system.

192. In the next article the above results will be
proved analytically.

To find the equation to any circle which cuts two given
ctrcles orthogonally.

Take the radical axis of the two circles as the axis of y,
so that their equations may be written in the form

P+yt—29x+c=0.................. (1),
and P+ —2g9x+c=0...c..o.... . (2),
the quantity ¢ being the same for each.

Let the equation to any circle which cuts them or-
thogonally be

(@=A)+ (g BE =R oo, (3).
The equation (1) can be written in the form
(w—g)’+y’:[Jg2—c]’ ............... (4).

The circles (3) and (4) cut orthogonally if the square of
the distance between their centres is equal to the sum of
the squares of their radii, .

t.e. if (A—g)+ B =R+ [\J@* -],
t.e. if A+ B-249g=R*—c ............... (5).

Similarly, (3) will cut (2) orthogonally if
A+ B2 —24g9,=R*—c................ (6).

Subtracting (6) from (5), we have 4 (g —g,)=0.
Hence 4 =0, and R*=RB?+ec.
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Substituting these values in (3), the equation to the

required orthogonal circle is
Z+y'—2By—c=0...cc...ce...... (7),

where B is any quantity whatever.

‘Whatever be the value of B the equation (7) represents
a circle whose centre is on the axis of ¥ and which passes
through the points (+ ,/¢, 0).

But the latter points are the limiting points of the
coaxal system to which the two circles belong. [Art. 189.]

Hence any pair of circles belonging to a coaxal system
is cut at right angles by any circle of another coaxal
system ; also the centres of the circles of the latter system
lie on the common radical axis of the original system, and
all the circles of the latter system pass through the limiting
points (real or imaginary) of the first system.

Also the centre of the circle (7) is the point (0, B) and
its radius is /B +¢.

The square of the tangent drawn from (0, B) to the
circle (1) = B%+ ¢ (by Art. 168).

Hence the radius_of any circle of the second system is
equal to the length of the tangent drawn from its centre to
any circle of the first system.

193. The equation to the system of circles which cut
a given coaxal system orthogonally may also be obtained
by using the result of Art. 182.

For any circle of the coaxal system is, by Art. 188,
given by

P+y’-2x+c=0..................(2),

where ¢ is the same for all circles.

Any point on the radical axis is (0, y').

The square on the tangent drawn from it to (1) is
therefore " + c.

The equation to any circle cutting (1) orthogonally is

therefore
P+ (y—9y)=y%+c,
i.e. 2 +y*—2yy'—e=0.
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‘Whatever be the value of g’ this circle passes through

the points (+4/c, 0), i.e. through the limiting points of the
system of circles given by (1).

194. We can now deduce an easy construction for the
circle that cuts any three circles orthogonally.

Consider the three circles in the figure of Art. 186.

By Art. 192 any circle cutting 4 and B orthogonally

has its centre on their common radical axis, s.e. on the
straight line 0D.

Similarly any circle cutting B and C orthogonally has
its centre on the radical axis OF. .

Any circle cutting all three circles orthogonally must
therefore have its centre at the intersection of 0D and OE,
2.e. at the radical centre 0. Also its radius must be the
length of the tangent drawn from the radical centre to
any one of the three circles.

EBx. Find the equation to the circle which cuts orthogonally each
of the three circles

B+y3+22+1Ty+ 4=0.cccceeireenrinnenns ),
224924 Tz+ 6y+11=0..c.cocceevvereenn. @),
234y — 2+22y+ B3=0....cc..ccevrvrnnnnn. 3).
The radical axis of (1) and (2) is
5z - 11y +7=0.
The radical axis of (2) and (3) is
8z - 16y +8=0.
These two straight lines meet in the point (3, 2) which is therefore
the radical centre.
The square of the length of the tangent from the point (3, 2) to
each of the given circles =57. -
The required equation is therefore (z - 8)%+ (y — 2)*=57,
i.e. - 22 +y2- 6z -4y - 44=0.
198. Bx. Find the locus of a point which moves so that the length

of the tangent drawn from it to one given circle is \ times the length of
the tangent from it to another given circle.

Asin Art. 188 take as axes of z and y the line joining the centres
of the two circles and the radical axis. The equations to the two
circles are therefore

22+y?-29,+e=0 .o 1,

and TR YR— 2024 =0 oo @).
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Let (h, k) be a point such that the length of the tangent from it to
(1) is always A times the length of the tangent from it to (2).

Then R+ k2 - 29, h+c=N[h2+ k2 - 2g,h +c].

Hence (, k) always lies on the circle

3_
L S I @)

This cirele is clearly a circle of the coaxal system to which (1) and
(2) belong.
Again, the centre of (1) is the point (g,, 0), the centre of (2) is

2_
(g, 0), whilst the centre of (3) is (g’;;_f! , 0) .

Hence, if these three centres be called 0,, O,, and Oy, we have
2 2
-9 A\
0108=g’:a -1 ' gl=x2__ 1 (.‘ls“.‘h)»

A2 — 1
and Osoa=g'7\g_—iql ~%=53-10-9)

80 that 0,04 : 0,05 :: N7 : 1.

The required locus is therefore a circle coaxal with the two given
circles and whose centre divides externally, in the ratio A3: 1, the line
joining the centres of the two given circles.

EXAMPLES. XXIV.

1. Prove that a common tangent to two circles of a coaxal
system subtends a right angle at either limiting point of the system.

2. Prove that the polar of a limiting point of a coaxal system
with respect to any circle of the system is the same for all circles of
the system.

3. Prove that the polars of any point with respect to a system of
coaxal circles all pass through a fixed point, and that the two points
are equidistant from the radical axis and subtend a right angle at a
limiting point of the system. If the first point be one limiting point
of the system prove that the second poipt is the other limiting point.

4, A fixed circle is cut by a series of circles all of which pass
through two given points; prove that the straight line joining the
intersections of the fixed circle with any circle of the system always
passes through a fixed point.

5. Prove that tangents drawn from any point of a fixed circle of
a coaxal system to two other fixed circles of the system are in a
constant ratio.
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6. Prove that a system of coaxal circles inverts with respect to
either limiting point into a system of concentric circles and find the
position of the common centre.

7. A straight line is drawn touching one of a system of coaxal
circles in P and cutting another in Q and R. Shew that PQ and PR

subtend equal or supplementary angles at one of the limiting points
of the system. ’

8. Find the locus of the point of contact of parallel tangents
which are drawn to each of a series of coaxal circles,
9. Prove that the circle of similitude of the two circles
23+y?-2kz+0=0 and 2®+y?-2k'z+3=0

(i. e. the locus of the points at which the two circles subtend the same
angle) is the coaxal circle
Bryr-2tt a0,
k+k

10. From the preceding question shew that the centres of simili-
tude (i.e. the points in which the common tangents to two circles
meet the line of centres) divide the line joining the centres internally
and externally in the ratio of the radii.

11. If z+y N/ -1=tan(u+v J—l), where z, y, 4, and v are all
real, prove that the curves u=constant give a family of coaxal circles
passing through the points (0, =1), and that the curves v=constant
give a system of circles cutting the first system orthogonally.

12. Find the equation to the circle which cuts orthogonally each
of the circles

224 y2+29x+¢=0, 23+ y3+2¢'z+ ¢ =0,
and 2 +y%+2hx + 2ky +a=0.

13. Find the equation to the circle cutting orthogonally the
three circles

23+yl=a?, (z-c¢)’+y’=a? and 2*+(y-Dd)’=a’

14. Find the equation to the circle cutting orthogonally the
three circles

2} +y?-22+38y - 7=0, 28 +y3+4 5z - 5y +9=0,
and 2 +y?+ Tz -9y +29=0.
15. Shew that the equation to the circle cutting orthogonally the
circles
(@-a)*+(y - b= (z-0P+(y-a)=a,
and (x—a—-b-c)2+y?=ab+c?,

is 2?4y -2z (a+b) —y(a+D)+a?+3ab+02=0.



CONIC SECTIONS.

CHAPTER X
THE PARABOLA.

196. Conic 8ection. Def. The locus of a point
P, which moves so that its distance from a fixed point is
always in a constant ratioto its perpendicular distance
from a fixed straight line, s called a Conic Section.

The fixed point is called the FFocus and is usually
denoted by 8.

The constant ratio is called the Eccentricity and is
denoted by e.

The fixed straight line is called the Directrix.

The straight line passing through the Focus and per-
pendicular to the Directrix is called the Axis.

‘When the eccentricity ¢ is equal to unity, the Conic
Section is called a Parabola.

‘When ¢ is less than unity, it is called an Ellipse.

‘When e is greater than unity, it is called a Hyper-
bola.

[The name Conic Section is derived from the fact that
these curves were first obtained by cutting a cone in
various ways. ]
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197. To find the equation to a Parabola.

Let S be the fixed point and ZM the directrix. We
require therefore the locus
of a point P which moves
so that its distance from §
is always equal to PM, its |

- perpendicular distance from
ZM.

Draw S§Z perpendicular -
to the directrix and bisect
SZ in the point 4 ; produce -
ZA to X.

The point 4 is clearly a
point on the curve and is
called the Vertex of the
Parabola.

Take A as origin, AX as the axis of z, and 47,
perpendicular to it, as the axis of y.

Let the distance Z4, or 4., be called a, and let P be
any point on the curve whose coordinates are z and y.

Join SP, and draw PN and PM perpendicular respec-
tively to the axis and directrix.

‘We have then SP*=PM?,
.e. (x—a) +32= ZN* =a + z)?,
yi=4ax..........cooienien. (1).

This being the relation which exists between the co-
ordinates of any point P on the parabola is, by Art. 42, the
equation to the parabola.

Cor. The equation (1) is equivalent to the geometrical

proposition
PN*=448.4N.

198. The equation of the preceding article is the
simplest possible equation to the parabola. Throughout
this chapter this standard form of the equation is assumed
unless the contrary is stated.
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If instead of AX and AY we take the axis and the
directrix ZM as the axes of coordinates, the equa.tlon
would be

(x—2a)*+ 3y =23,
t.e. Y=4a(x—a).ccceeuveneerinnnn.n. (1).

Similarly, if the axis SX and a perpendicular line SZ
be taken as the axes of coordinates, the equation is

24yt = (z + 20)}
e Y=4a(x+a) . ccceveriiinnnn.. ).

These two equations may be deduced from the equation
of the previous article by transforming the origin, firstly to
the point (- @, 0) and secondly to the point (a, 0).

199. The equation to the parabola referred to any focus and

directrix may be easily obtained. Thus the equation to the parabola,
whose focus is the point (2, 3) and whose directrix is the straight

lme.t -4y +3=0, is 5
(2~ 2P+ (y - 8= {’”7’%“;,} :

ie. 17[2+y?— 4z — 6y +13]= {a?+ 16y2+9 — 8zy + 6z — 24y},
i.e. 1622+ y2 + 8zy — T4z - T8y +212=0.

200. 7o trace the curve

If x be negative, the corresponding values of y are
imaginary (since the square root of a negative quantity is
unreal) ; hence there is no part of the curve to the left of
the point 4.

If y be zero, so also is x, so that the axis of x meets
the curve at the point 4 only.

If = be zero, so also is y, so that the axis of y meets
the curve at the point 4 only.

For every positive value of & we see from (1), by taking
the square root, that y has two equal and opposite values.

Hence corresponding to any point P on the curve there -
is another point P’ on the other side of the axis which is
obtained by producing PN to P so that PN and NP are
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equal in magnitude. The line PP’ is called a double
ordinate.

As z increases in magnitude, so do the corresponding
values of y; finally, when = becomes infinitely great, y
becomes infinitely great also.

By taking a large number of values of x and the
corresponding values of y it will be found that the curve is
as in the figure of Art. 197.

The two branches never meet but are of infinite length.

201. The quantity y* — 4ax’ is negative, zero, or positive
according as the point (x', y') 18 within, upon, or without the
parabola.

Let @ be the point («, ¥') and let it be within the
curve, 1.e. be between the curve and the axis 4X. Draw
the ordinate QN and let it meet the curve in P.

Then (by Art. 197), PN*=4a.'

Hence 7, i.e. QN? is <PN? and hence is < 4ax'.

.y —4ax’ is negative.

Similarly, if @ be without the curve, then y?, i.e. QN?
is > PN? and hence is > 4ax’.

Hence the proposition.

202. Latus Rectum. Def. The latus rectum of

any conic is the double ordinate LSL’ drawn through the
focus S.

In the case of the parabola we have SZ =distance of L
_from the directrix =82 = 2a.

e Hence the latus rectum = 4a.

‘When the latus rectum is given it follows that the
equation to the parabola is completely known in its
standard form, and the size and shape of the curve
determined.

The quantity 4a is also often called the principal
parameter of the curve.

Focal Distance of any point. The focal distance
of any point P is the distance SP.

This focal distance =PM =ZN=ZA4 +AN=a + .

L. . 12



178 COORDINATE GEOMETRY.

Ex. Find the vertex, azxis, focus, and latus rectum of the parabola
4y? + 122 — 20y +67=0.

The equation can be written
y'-by=-3z-9,
i.e. (y-4?P=-3z-4L+3¢= -3 (z+]).

Transform this equation to the point (-, §) and it beoomes
y?= — 3z, which represents a parabola, whose axis is the axis of x
and whose concavity is turned towards the negative end of this axis.
Alsgo its latus rectum is 3.

Referred to the original axes the vertex is the point ( - §, §), the
axis is y =4, and the focus is the point (- § - §, §), t.e. (—3Z, §).

Find the equation to the parabola with
1. focus (3, —4) and directrix 6z - Ty+5=0.

2. focus (a, b) and directrix Z+ Y_1.

b
Find the vertex, axis, latus rectum, and focus of the parabolas
3. y*=4dx+4y. 4, 2°+2=8z-7.
5. 2%-2az+2ay=0. 6. y?=4y-4zx.

7. Draw the curves
(1) y?®=-4az, (2) a®=4ay, and (3) 22= —4day.

. Find the value of p when the parabola y2?=4pz goes through
the point (i) (3, - 2), and (ii) (9, - 12).

9. For what point of the parabola y2=18z is the ordinate equal
to three times the abscissa ?

10. Prove that the equation to the s.rn.bola whose vertex and foous
are on the axis of = at distances a and a’ f om the origin respectively,
is y2>=4(a’-a)(z-a).

11. In the parabola y’—ﬁz, find (1) the equation to the chord
through the vertex and the negative end of the latus rectum, and
(2) the equation to any chord through the point on the curve whose
abscissa is 24.

12. Prove that the equation y2+84z+2By+ 0 0 represents a
parabola, whose axis is parallel to the axis of z, and find its vertex and
the equation to its latus rectum.

13. Prove that the locus of the middle points of all chords of
the parabola y?=4az which are drawn through the vertex is the
parabola y*=2az.
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14. Prove that the locus of the oentre of a circle, which intercepts
& chord of given length 2a on the axis of z and passes through a given
point on the axis of y distant b from the origin, is the curve

23— 2yb+ b3=al.
Trace this parabola.

15. PQ is a double ordinate of a parabola. Find the locus of its
points of trisection,

16. Prove that the locus of a point, which moves so that its
distance from a fixed line is equal to the length of the tangent drawn

from it to a given circle, is a parabola. Find the position of the
focus and direotrix. -

17. If a circle be drawn so as always to touch a given straight
line and also a given circle, prove that the locus of its centre is
a parabola.

18. The vertex 4 of a parabola is joined to any point P on the
curve and PQ is drawn at right angles to AP to meet the axis in Q.
Prove that the projection of PQ on the axis is always equal to the
latus rectum.

19. Ifon a given base triangles be desoribed such that the sum of
the tangents of the base angles is constant, prove that the locus of
the vertices is a parabola.

20. A double ordinate of the curve y?=4pz is of length 8p ; prove
that the lines from the vertex to its two ends are at right angles.

21. Two parabolas have a common axis and concavities in oppo-
gite directions; if any line parallel to the common axis meet the
parabolas in P and P’, prove that the locus of the middle point of PP
i8 another parabola, prov-nded that the latera recta of the ngen para-
‘bolas are unequal.

22. A parabola is drawn to pass through 4 and B, the ends of
a diameter of a given circle of radius a, and to have as directrix a
tangent to a concentric circle of radius b; the axes being 4B and
a perpendicular dial:letet, prove that the locus of the focus of the

. a2 i
parabola is 52-.+m,_.1.

203. To find the points of intersection of any straight

line with the parabola
P=4ax coocooiiiiiinnn 1).
The equation to any straight line is
Y=ML+Corrrnnnennnrnnnennnnn. (2).

The coordinates of the points common to the straight
line and the parabola satisfy both equations (1) and (2),
and are therefore found by solving them.

12—2
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Substituting the value of y from (2) in (1), we have
(mx + c)? = dax,
t.e. m2? + 2z (me— 2a) + =0 ............. (3).
This is a quadratic equation for « and therefore has two
roots, real, coincident, or imaginary.
) The straight line therefore meets the parabola in two
' points, real, coincident, or imaginary.
The roots of (3) are real or imaginary according as
{2 (mec — 2a)} - 4m?c? '
is positive or negative, t.e. according as —amec +a? is
positive or negative, 4.e. according as mc is < a.
204. To find the length of the chord intercepted by the parabola on

the straight line - )
YSMEFC oenreeenininiinninineianns (1).

It (:l:l , and 24, Y3) be the common points of intersection, then,
a3 in A %4 ve, from equation (3) of the last article,

(-"1 ENEI RN RS N
_4(me- 2a)* 4c*_ 16a(a—me)
mé m mé !
and Y1~ Ya=m (T~ T5).
Hence the required length= A/(y, - y5)*+ (z, - =)

_ 4 -
=~/1+m“ (71~ 29) = 73 J1+m? Ja(a—nw).

205. To find the equation to the tangent at any point
(«, &) of the parabola y* = 4ax.

The definition of the tangent is given in Art. 149.

Let P be the point («, y') and @ a point (2", ¥”) on the
parabola.

The equation to the line PQ is

o yu _ yl o
y—y —x—,,_x,(:c ) IR (1).
Since P and @ both lie on the curve, we have
Yi=dax' ......cooooiiiiiiiin.. (2),

- and yi=dax’ ... (3)
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Hence, by subtraction, we L.ave
yll’ - y’: - 4“ (m” - mt),

i.e. (y" y’)( 1” +y’) — 4a (.?;ll_x’)’
and hence "/ ;’/ 4a
x’ —a y’ +y"

Substituting this value in equation (1), we have, as
the equation to any secant PgQ,

y—y = _4a (@—o)
y y" + yl
t.e. y (@ +y")=4az+yy" +y?— tur
=4ax+yy" cceiviiniiin (4).
To obtain the equation of the tangent at (x, ') we take
@ indefinitely close to P, and hence, in the limit, put ¥ =y’
The equation (4) then becomes
2yy =y + 4ax = dax + 4ax,
i.e. Yy =2a (x+x').
Cor. It will be noted that the equation to the tangent

is obtained from the equation to the curve by the rule of
Art. 152.

Bxs. The equation to the tangent at the point (2, —4) of the
parabola y?=8z is
y(-4)=4(z+2),
i.e. z+y+2=0.
The equation to the tangent at the point (ﬁ—, R %“f) of the parabola

yY2=4az is
2a a
y.;=2a .’t+m y
. : a
t.e. y—mx+;‘.

206. To find the condition that the straight line
Y=ME+C . ..loceeiiniiennnanennnn(l)
may touch the parabola PP =4ax ........ccoveveniiniini. (2).

The abseisse of the points in which the-straight line (1)
meets the curve (2) are as in Art. 203, given by the equation

mie? + 2 (me — 2a) +c*=0 ............ (3).
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The line (1) will touch (2) if it meet it in two points
which are indefinitely close to one another, t.e. in two
. points which ultimately coincide.

The roots of equation (3) must therefore be equal.
The condition for this is

4 (mc — 2a)* = 4mc?,

t.e. ) a—amec=0,
so that c=2 .
m

Substituting this value of ¢ in (1), we have as the
equation to a tangent,

y=mx+%.

In this equation m is the tangent of the angle which
the tangent makes with the axis of .
The foregoing propesition may also be obtained from the equation

of Art. 205.
For equation (4) of that article may be written

In this equation put z—(f:m, i.e. y’_—.%‘-:,

Py .

and hence C =Y =2, and 2—",3"’-:2',
- 4a ~ m? Yy m

The equation (1) then becomes y =mz + 7% .

2a
mt’ m)"

207. Equation to the normal at (2, y'). The required
normal is the straight line which passes through the point
(«, ¥') and is perpendicular to the tangent, i.e. to the
straight line

- Algo it is the tangent at the point (2, y'), i.e.

2a ,
=—(x+x)
y=7 @+)
Its equation is therefore
y—y =m'(z-2),

where m' x 2a__ 1, te m'=- él/‘;' ,  (Art. 69.)

Y
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and the equation to the normal is
=Y x-x
y-y =43 (X=X) .o, (1).

208. To express the equation of the normal in the Jorm
Yy = mx — 2am — am®.
In equation (1) of the last article put

_2—3 =m, t.e. y =—2am.
'3
Hence Z=Y —am.
4a

The normal is therefore
Y + 2am =m (x — am?),

1.6 y=mx-—2am — am3,
and it is a normal at the point (am? — 2am) of the curve.

In this equation m is the tangent of the angle which
the mormal makes with the axis. It must be carefully
distinguished from the m of Art. 206 which is the tangent
of the angle which the tangént makes with the axis. The
“m?” of this article is — 1 divided by the “m” of Art. 206.

209. Subtangent and Subnormal. Def. If
the tangent and normal at any point P of a conic section
meet the axis in 7' and @ respectively and PN be the
ordinate at P, then N7 is called the Subtangent and NG the
Subnormal of P,

T'o find the length of the subtangent and subnormal.
If P be the point (x, ') the equation to I'P is, by
Art. 205,
yy'=2a(x+)...... 1).
To obtain the length of 47, we
have to find the point where this
stmght line meets the axis of «,

i.e. we put y=0in (1) a.nd we
have

x=—a (2)
Hence AT =AN.
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[The negative sign in equation (2) shews that 7' and
N always lie on opposite sides of the vertex A.]

Hence the subta.ngent NT =2A4AN = twice the abscissa
of the point P.

Since 7P@ is a right-angled triangle, we have (Euc. v1. 8)

=TN. NG.
Hence the subnormal ¥@
_PN* PN %
TN T 24N

The subnormal is therefore constant for all points on
the parabola and is equal to the semi-latus rectum.

210. Ex. 1. If a chord which is normal to the parabola at one
end subtend a right angle at the vertex, prove that it is inclined at an
angle tan~,/2 to the axis.

The equation to any chord which is normal is
y=mz — 2am — am?,
i.e. me —y =2am+ amd,
The parabola is y*=4ax,
The straight lines joining the origin to the intersections of these
two are therefore given by the equation
y2 (2am + am®) — daz (mx — y) =0.
If these be at right angles, then
2am 4+ am® — 4am =0,
i.e. m==x ,J 2.
Bx. 2. From the point where any normal to the parabola y*=4az

meets the azxis is drawn a line perpendicular to this normal; prove that
this line always touches an equal parabola.

The equation of any normal to the parabola is
y=mz — 2am — am3,
This meets the axis in the point (2a + am?, 0).

The equation to the straight line through this point perpendicular
to the normal is

y=m, (z -2 - am?),
where mm= —1.
The equation is therefore

- 92 a
y=m (- a,-;h-g .

t.e. y=m,(x—2a)—7%1.
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This straight line, as in Art. 206, always touches the equal parabola
yi= -4a (z - 2a),
whose vertex is the point (2a, 0) and whose conoavity is towards the
negative end of the axis of z.

EXAMPLES. XXVL

~ Write down the equations to the tangent and normal

1. at the point (4, 6) of the parabola y*=9z,

2. at the point of the parabola y2=6x whose ordinate is 12,

3. at the ends of the latus rectum of the parabola y3=12z,

4, at the ends of the latus rectum of the parabola y?=4a (z - a).

5. Find the equation to that tangent to the parabola y*=T7z
which is parallel to the straight line 4y —2+8=0. Find also its
point of contact.

6. A tangent to the parabola y2=4ax makes an angle of 60° with
the axis; find its point of contact.

7. A tangent to the parabola y?=8z makes an angle of 45° with
the straight line y=3z+5. Find its equation and its point of
contact.

8. Find the points of the parabola y?=4axr at which (i) the
tangent, and (ii) the normal is inclined at 30° to the axis.

9. Find the equation to the tangents to the parabola y3=9z which
goes through the point (4, 10).

10. Prove that the straight line z+y=1 touches the parabola
y=x-a3

11. Prove that the straight line y=mx+¢ touches the parabola

=4a (z+a) if c=ma+£. .

12, Prove that the straight line lx +my +n =0 touches the parabola
y2=4axz if In=am?,

13. For what point of the parabola y2=4ax is (1) the normal equal
to twice the subtangent, (2) the normal equal to the difference between
the subtangent and the subnormal ?

Find the equations to the common tangents of

14. the parabolas y>=4az and z2=4by,

15. the circle 22+ y?=4az and the parabola y2=4az.

16. Two equal parabolas have the same vertex and their axes are
at right angles; prove that the common tangent touches each at the
end of a latus rectum.
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17. Memwommm.mbmm
P=4a(z+ : the other to the parabols y*=44’ (z + «'), which are
st right a to one another, meet on the straight line s+ a +a’=0.

Shew also that this straight line is the common chord of the two

18. PN is an ordinate of the parabols; a straight line is drawn
to the axis to bisect NP and meets the curve in Q; prove
d:;tNngmthcmtutbevminnpointTmehm
=
1

19. Prove that the chord of the parabola y*>=4ax, whose equation
iaj - z4/2+4a,/2=0, is a normal to the curve and that its length is
Ba.

3

20, 1f perpendiculars be drawn on any tangent {o a parabola from
two fixed points on the axis, which are equidistant from the focus,
prove that the difference of their squares is constant.

21, If P, Q, and R be three points on a parabola whose ordinates
are in geometrical progression, prove that the tangents at P and R
meet on the ordinate of Q.

29, Tangents are drawn to a parabola at points whose absciss®
are in the ratio u : 1; prove that they intersect on the curve

yi= (u* +uYaz
23, If the tangents at the points (', y') and (z”, y”) meet at the
plt::nt (@3, ;) and the normals at the same points in (z,, y,), prove
]

(1) z,-’-’- - and I _y_ﬂ/ ,

YY"

+9'y" + n,
(2) a:,=2a+y” yz‘—y and y,=-y'y e’

and hence that \
(8) &=2a+ &- -z, and y,= _x‘y, .

24. From the preoedmg question prove that if tangents be drawn
to the arabola :{’ =4az from any point on the p&tn.bola y2=a(z+Db),
t:)en e normals at the points of contact meet on a fixed straight
line.

25. Find the lengths ot the normals drawn from the point on the
axis of the parabola y?=8ux whose distance from the focus is 8a.

26. Prove that the locus of the middle point of the portion of a
normal intersected between the curve and the axis is a parabola whose
vertex is the foous and whose latus rectum is one quarter of that of
the original parabola,

27. Prove that the distance between a tangent to the parabola and

the parallel normal is a cosec 9 sec® 8, where 4 is the angle that either
m‘ken with the axis.
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28. PNP is a double ordinate of the parabola; prove that the
locus of the point of intersection of the normal at P and the diameter
through P’ is the equal parabola y2=4a (z - 4a).

29. The normal at any point P meets the axis in G and the
tangent at the vertex in G'; if 4 be the vertex and the rectangle
AGQG’ be completed, prove that the equation to the locus of Q is

z3=2az?+ays.

30. Two equal parabolas have the same focus and their axes are
at right angles; a normal to one is perpendicular to a normal to the
other; prove that the locus of the point of intersection of these
normals is another parabola.

31. If a normal to a parabola make an angle ¢ with the axis,
shew that it will out the curve again at an angle tan—! (4 tan ¢).

32. Prove that the two parabolas y2=4az and y*=4c (z — b) cannot
have a common normal, other than the axis, unless e >2,

33. If a®>8b3, prove that a point can be found such that the two
tangents from it to the parabola y2=4az are normals to the parabola
ai=1dy.

34. Prove that three tangents to a parabola, which are such that
the tangents of their inclinations to the axis are in a given harmonical
progression, form a triangle whose area is constant.

35. Prove that the parabolas y3=4az and 22=4by cut one another
3atpt
2 (at + 34’
36. Prove that two parabolas, having the same focus and their axes
in opposite directions, cut at right angles.
37. Shew that thé two parabolas
23+4a(y —2b-a)=0 and y*=4b (x 2a +b)

intersect at right angles at a common end of the latus rectum
of each.

38. A parabola is drawn _touching the axis of z at the origin and
having its vertex at a given distance % from this axis. Prove that the
axis of the parabola is a tangent to the parabola z?= - 8k (y — 2k).

at an angle tan™1

211. Some properties of the Parabola. .

(a) If the tangent and normal at any point P of the
parabola meet the axis in T' and G respectively, then

ST=8G=SP,
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and the tangent at P 18 equally snclined to the axis and the
Jocal distance of P.

Let P be the point («, ).
Draw PM perpendicular to the directrix.
By Art. 209, we have AT=A4N.
“TS=TA+AS=AN+ZA=ZN=MP =8P,
and hence tSTP=( SPT.
By the same article, NG =2485=2Z28.
" SG=8SN +NG@=28 + SN=MP=S8P.

8 IfthctwngmtathetﬂwdzrectmmKthen

KSP 18 a right angle.

For ¢ SPT=¢PTS=. KPM.

Hence the two triangles XPS and KPM have the two
sides KP, PS and the angle KPS equal respectively to the
two sides KP, PM and the angle KPM.

Hence ¢ KSP=.:KMP =a right angle.

‘Also tSKP=: MKP.

(y) Tangents at the extremities of any focal chord inter-
sect at right angles in the directrix.

For, if PS be produced to meet the curve in 7, then,

since . P'SK is a right angle, the tangent at P’ meets the
directrix in K.

— _._—.'r—‘—-d
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Also, by (8), ¢t MKP =+ SKP,
and, similarly, t M'KP =1 SKP.
Hence
¢ PKP =}t SKM +} ¢+ SKM’ = a right angle.
(8) If SY be perpendicular to the tangent at P, then Y
Uies on the tangent at the vertex and SY*= AS. SP.
For the equation to any tangent is

The equation to the perpendicular to this line passing
through the focus is

Y=——(T—@a) ceeierruvrnrnnenne (2)
The lines (1) and (2) meet where
a 1 1 a
mr+—=——(r—a)=——x+—,
m m m- m

2.e. where z=0.
Hence Y lies on the tangent at the vertex.
Also, by Eue. v1. 8, Cor.,
SY*=S84.8T=AS.SP.

212. To prove that through any given point (x,, y,)
there pass, in general, two tangents to the parabola.

The equation to any tangent is (by Art. 206)

If this pass through the fixed point (z,, ¥,), we have
a
Y =mx; + ;;L )

i.e. mie, —my, +@=0.......coeeanal, (2).

For any given values of x, and y, this equation is in
general a quadratic equation and gives two values of m
(real or imaginary).

Corresponding to each value of m we have, by substi-
tuting in (1), a different tangent.
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The roots of (2) are real and different if y,* — 4ax, be
positive, i.e, by Art. 201, if the point (x,, yl) lie without
the curve.

They are equal, ¢.e. the two tangents coa.lesce into one
tangent, if ¥,? — 4ax, be zero, i.e. if the point (x,, ¥,) lie on
the curve.

The two roots are imaginary if y,?— 4ax, be negative,
i.e. if the point (x,, 3,) lie within the curve.

213. Equation to the chord of contact of tangents
drawn from a point (z,, y,).
The equation to the tangent at any point §, whose
coordinates are z’ and ¥/, is
vy =2a (x+ ).
Also the tangent at the point R, whose coordinates are
z" and y”, is
vy’ =2a (x+a").
If these tangents meet at the point 7', whose coordi-
nates are «, and y,, we have

y,y' =2a (2 + &) .coininn 1)
and vy =2a(x +2") oo 2).
The equation to QR is then
yyi=2a(X+X)... .cooennnnne (3)

For, since (1) is true, the point («, ¥') lies on (3).
Also, since (2) is true, the point («”, y") lies on (3).
Hence (3) must be the equa.tlon to the straight line

joining (2, ¥') to the point («", y' "), t.e. it must be the
equation to @R the chord of conta.ct of tangents from the

pomt (Q?l, yl)

214. The polar of any point with respect to a para-
bola is defined as in Art. 162.

To find the equation of the polar of the point (x,, v,)
with respect to the parabola 2 = 4ax.

Let @ and R be the points in which any chord drawn
through the point P, whose coordinates are (x,, 7,), meets
the parabola.



THE PARABOLA. POLE AND POLAR. 191

Let the tangents at @ and R meet in the point whose
coordinates are (4, k).

TChk)

‘We require the locus of (%, k).

Since QR is the chord of contact of tangents from (&, k)
its equation (Art. 213) is

ky =2a(x + k).
Since this straight line passes through the point (z,, ¥,)
we have
kyy=2a (, +Rh).eoneninan, (1).

Since the relation (1) is true, it follows that the point
(%, k) always lies on the straight line

YVi=28(X4+X) . .ccooniinnnnnnn. (2).
Hence (2) is the equation to the polar of (z,, ¥,).

Cor. The equation to the polar of the focus, viz. the point (a, 0),
is 0=z +a, 8o that the polar of the focus is the directrix.

215. When the point (z,,,) lies without the parabola
the equation to its polar is the same as the equation to the
chord of contact of tangents drawn from (x,, 7).

‘When (z,, ,) is on the parabola the polar is the same
as the tangent at the point.

As in Art. 164 the polar of (»,, y,) might have been
defined as the chord of contact of the tangents (real or
imaginary) that can be drawn from it to the parabola.

216. Geometrical construction for the polar of a point
(%15 )- )
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Let T be the point (x;, #,), so that its polar is

YN=2a(T+2))eccuienninnninnnn.n. (1).
Through 7' draw a straight line parallel to the axis; its
equation is therefore

Y=Y ceeerearnnnnns (2).
Let this straight line meet the polar T
in V and the curve in P. v
The coordinates of V, which is the Q
intersection ,of (1) and (2), are therefore

y—"—-acl and 7, ......... (3).
2a 1
" Also P is the point on the curve
whose ordinate is ¥,, and whose coordi- Fie. 1
nates are therefore g =

R

2
% and ¥,.

Since abscissa of P— abscissa of 7'+ abscissa of V’ there.

2
fore, by Art. 22, Cor., P is the
middle point of 7'F.

Also the tangent at P is

= L2
¥y, =2a (:c + 4;> ,
which is parallel to (1).
Hence the polar of 7' is parallel
to the tangent at P. Tig. 2.

To draw the polar of 7' we therefore draw a line through
T, parallel to the axis, to meet the curve in P and produce
it to V so that TP = PV'; a line through V parallel to the
tangent at P is then the polar required.

217. If the polar of a point P passes through the point T, then
the polar of T goes through P. (Fig. Art. 214).
Let P be the point (z;, ;) and T the point (&, k).
The polar of P is yy, =2a (z+2=,).
Since it passes through 7', we have
: Yik=2a (24 h) ...ooccvvnininiiiiiiininneans (1).
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The polar of T is yk=2a (z+ h).

Since (1) is true, this equation is satisfied by the coordinates z,
and y;.

Hence the proposition.

Cor. The point of intersection, T, of the polars of two points,
P and Q, is the pole of the line PQ.

218. To find the pole of a given straight line with respect to the
parabola.
Let the given straight line be
Az + By +C=0.

If its pole be the point (z,, y,), it must be the same straight
line as '
yy,=2a (z+2),

i.e. 2az - yy, + 2az,=0.
Since these straight lines are the same, we have
2 _ -y _ 2az,
4B ¢

i.e. 2=~ and y;=-"—.

219. 7o find the equation to the pair of tangents that
can be drawn to the parabola from the point (x,, y,).

Let (A, k) be any point on either of the tangents drawn
from (z,, ;). The equation to the line joining (=, y,) to
(h, k) is

k_
y-th= y‘(w @),
. k— ?/1 "’.’/1“’“’1.

2.6 Y= -y x+ h—x,
If this be a tangent it must be of the form

a
y:mac+a,

so that E=% _ 1 ang M= Ica:l=g_
h-a “h— m
Hence, by multiplication;,
_ k—y by, — b,
h—z, h—m
i.e. a (b =)= (k- 3) (hy, = kx,).

’
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The locus of the point (A, k) (i.e. the pair of tangents
required) is therefore

a(@—m)f =Y —u) @H—y2) eoneene (1).
It will be seen that this equation is the same as

(v* — 4a2) (3, — 4ax) = {yy, — 2a (z + z,)}"

220. 7o prove that the middle points of a system of
parallel chords of a parabola all lie on a straight line which
18 parallel to the axis.

Since the chords are all parallel, they all make the same
angle with the axis of . Let
the tangent of this angle be im.

The equation to @R, any
one of these chords, is there-
fore

y=mx+c...... 1),
where ¢ is different for the
several chords, but m is the
same.

This straight line meets the parabola *=4ax in points
whose ordinates are given by

my* = 4a (y —c),
i, Y O @).

m

Let the roots of this equatlon, s.e. the ordinates of Q@
and R, be ' and y”, and let the coordinates of ¥V, the
middle point of @R, be (4, k).

Then, by Art. 22,

from equation (2).
The coordinates of V therefore satisfy the equation
2a
y=—

so that the locus of Vis a stmght line parallel to the axis
of the curve.
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The straight line y= 2a meets the curve in a point P,

whose ordinate is 2— and whose abscissa is therefore i
The tangent at thm point is, by Art. 205,

y=ma:+a,

and is therefore parallel to each of the given chords.

Hence the locus of the middle points of a system of
parallel chords of a parabola is a straight line which is
parallel to the axis and meets the curve at a point the
tangent at which is parallel to the given system.

221. To find the equation to the chord of the parabola which is
‘bisected at any point (h, k).

By the last artiole the required chord is parallel to the tangent at
the point P where a line through (h, k) parallel to the axis meets the
curve.

Algo, by Art. 216, the polar of (k, k) is parallel to the tangent at
this same point P.

The required chord is therefore parallel to the polar yk=2a (z + k).
Hence, since it goes through (A, k), its equation is
k(y-k)=2a(z-h) (Art. 67).

222. Diameter. Def. The locus of the middle points
of a system of parallel chords of a parabola is called a
diameter and the chords are called its double ordinates.

Thus, in the figure of Art. 220, PV is a diameter and
QR and all the para.]lel chords are ordinates to this
diameter.

The proposition of that article may therefore be stated
as follows.

Any diameter of a parabola is parallel to the axis and
the tangent at the point where it meets the curve 48 parallel
to its ordinates.

223. The tangents at the ends of any chord meet on
the diameter which bisects the chord.

Let the equation of QR (Fig., Art. 220) be
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and let the tangents at @ and R meet at the point 7T
(xu .'/1)
Then QR is the chord of contact of tangenta drawn
from 7, and hence its equation is
=2a (x + z,) (Art. 213).
Comparing this with equation (1), we have

2a 2a
.'/_1=m’ 8o that h=

and therefore 7' lies on the straight line
_2a
Y=m"

But this straight line was proved, in Art. 220, to be
the diameter PV which bisects the chord.

224. 7o find the equation to a& parabola, the axes
being any diameter and the tamgent to the parabola at the
point where this diameter meets the curve.

Let PVX be the diameter and PY the tangent at P
meeting the axis in 7'

-
Take any point @ on the curve, Q
and draw @M perpendicular to the P
axis meeting the diameter PV in L. f %
Let PV be 2 and 7Q be y. S/
T AASN M

Draw PN perpendicular to the
axis of the curve, and let

0=:YPX=/.PTM.
Then
448. AN = PN’ =NT?tan*@=4A4AN?. tan? 6.
. AN =A48. cot? 0= a cot? 6,

and PN =N4A4S. AN =2acot .
Now QMP=4AS . AM=4a.AM ............ 1).
Also

QM=NP+LQ=2acotf + VQsin 6 = 2a cot § +y sin 0,
and AM=AN+PV + VL=acot?d + x+ ycosb.
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Substituting these values in (1), we have
(2a cot 6 + y sin 0)* = 4a (a cot? § + = + y cos ),

we. y*sin? 0 = 4az.
The required equation is therefore
P=4Px oo (2),
where
= —a(l +cot?f)=a + AN=SP (by Art. 202).

The equation to the parabola referred to the above axes
is therefore of the same form as its equation referred to the
rectangular axes of Art. 197.

The equation (2) states that
QV*=48P.PV.

225. The quantity 4p is called the parameter of the
diameter PV. It is equal in length to the chord which is
parallel to PY and passes through the focus.

For if @' V'R’ be the chord, parallel to PY and passing
through the focus and meeting PV in V', we have

PV’ =8T=8P=p,
so that QV?=4p. PV’ =4p’,
and hence QR =2Q'V =4p.

226. Just as in Art. 205 it could now be shown that
the tangent at any point («, &) of the above curve is
. vy =2p (x+ &).
Similarly for the equation to the polar of any point.

EXAMPLES. XXVII.

1. Prove that the length of the chord joining the points of
contact of tangents drawn from the point (z,, y,) is

Nyt et Ny~ daz,
a
2. Prove that the area of the triangle formed by the tangents
from the point (z,, ;) and the chord of contact is (y,3— 4aa;1)‘-:-2a.
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8. If a perpendicular be let fall from any point P upon its polar
prove that the distance of the foot of this perpendicular from the
foous is equal to the distance of the point P from the directrix.

4, What is the equation to the chord of the parabola y*=8z
which is bisected at the point (2, -3)?

5. The general equation to a system of parallel chords in the
parabola y?=3tz is 4z-y+k=0.
‘What is the equation to the corresponding diameter?

8. P, Q, and R are three points on a parabola and the chord PQ
cuts the diameter through R in V., Ordinates PM and QN are drawn
to this diameter. Prove that RM . RN=RV3,

7. Two equal parabolas with axes in opposite directions touch at
a point O. From a point P on one of them are drawn tangents PQ
and PQ’ to the other. Prove that QQ’ will touch the first parabola in
P’ where PP’ is parallel to the common tangent at O,

Coordinates of any point on the parabola ex-
pressed in terms of one variable.

227. It is often convenient to express the coordinates
of any point on the curve in terms of one variable.
It is clear that the values
a 2a
R LI A,
always satisfy the equation to the curve.
Hence, for all values of m, the point

a 2_0)
(m’ ''m

lies on the curve. "By Art. 206, this ‘m is equal to the
tangent of the angle which the tangent at the point makes
with the axis.

The equation to the tangent at this point is
a
y=mx+ m’
and the normal is, by Art. 207, found to be

a
my+x=2a+;;,.
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228. The coordinates of the point could also be ex-
pressed in terms of the m of the normal at the point; in
this case its coordinates are am? and — 2am.

The equation of the tangent at the point (am?, — 2am)

is, by Art. 205,
my +x +am*=0,
and the equation to the normal is
y =mx — 2am — am’.

229. The simplest substitution (avoiding both nega-

tive signs and fractions) is
x=at? and y =2at.
These values satisfy the equation y* = 4ax.

The equations to the tangent and normal at the point
(at?, 2at) are, by Arts. 205 and 207,

ty =x + at’,
and Y+ te=2at + af’.
The equation to the straight line joining
(at?, 2at;) and (at? 2at,)
is easily found to be
Y (4 + b)) =2 + 2att,.
The tangents at the points
(at? 2at) and (at? 2at,)
are Ly =x+ at?
and ty=x+at’
The point of intersection of these two tangents is clearly

{atits, @ (8 +12,)}.

The point whose coordinates are (at?, 2at) may, for
brevity, be called the point ¢¢.”

In the following articles we shall prove some important
properties of the parabola making use of the above substi-
tution.
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280. If the tangents at P and Q meet in T, prove that
(1) TP and TQ subtend equal angles at the focus S,
(2) ST*=8P.SQ,

and (3) the triangles SPT and STQ are similar.

Let P be the point (at,?, 2at,), and Q be the

int (atz’ 2a3) that (Art. 229) T is the point
atity, a(t+t)}

(1) The equation to SP is y= 51

i.e t?-1)y -2tz + 2at,=0.
The perpendicular, TU, from T on this
straight line
_a(td=1)(t+t) -2 atta+2a _ (68 = t) + (t ~ t)
- NE-1 4 t3+1
=a(t~t,).
Bimilarly TU’ has the same numerical value.
The angles PST and QST are therefore equal.
(2) By Art. 202 we have SP=a (1+¢,3) and SQ—a(1+f 22).

(z a),

Also ST3=(at,t, — a)+a? (t, +t;)?
=a?[t,33+ 6,2+ t2+ 1)=a® (1 + £,%) (1 + ¢,%).
Hence 8T?=8P.8Q.
(3) Since gf, :g' and the angles T'SP and T'SQ are equal, the

triangles SPT and STQ are similar, so that
L8SQT= £ STP and £STQ= LSPT.

281. The area of the triangle formed by three points on a
pambola is twice the area of the triangle formed by the tangents at
these points.

Let the three points on the parabola bé 1:.
(at, 2aty), (at,3, 2aty), and (aty?, 2aty). -

The area of the triangle formed by these points, by Art. 25,

=1} [aty? (2aty - 2aty) + aty? (2aty - 2at,) +aty? (2at, - 2aty)]

= —a? (t3-t5) (1) (t,~t5).
The intersections of the {angents at these points are (Art. 229)

the points
{atats, a(ta+ty)}, {atshy, a(ty+8)}, and {atyty, a (8 +1ty)}.
The area of the triangle formed by these three points
=} {atyts (aty ~ aty) +atyt, (at, - aty) +atyty (aty—aty)}

=402 (83— 1) (t3- tx) (t-t).
The first of these areas is double the seoond.
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2B3. The circle circumscribing the triangle formed by any three
tangents to a parabola passes through the focus.

*Let P, Q, and R be the points at which the tangents are drawn
and let their coordinates be
(aty?, 2at)), (aty?, 2aty), and (aty?, 2aty).
As in Art. 229, the tangents at Q and R intersect in the point .
{atsty, a(ty+1)}.
Similarly, the other pairs of tangents meet at the points
{atgty, a(t+4)} and {atity, a(t+4)}
Let the equation to the circle be
B4y 4292+ 2y +c=0..ouuvreieeieeenennnnn (1).
Since it passes through the above three points, we have
a2t +a? (ty+ ty)2 + 2gatety + 2fa (8, + ty) +¢=0......... 2),
alty¥t 3+ a¥ (ty+ )3+ Bgatyt, +2fa (t+ 4) +e=0......... (3),
and a’t 33 +a? (¢, + t,)?+ 2gat,ty + 2fa (t + ) + ¢=0......... (4).
Subtracting (3) from (2) and dividing by a (¢, - ¢,), we have
a {13 (4 + &)+ 4 + 4+ 26} + 29t + 2=0.
Similarly, from (3) and (4), we have
a{t;? (tg+ty) + 8y + 5+ 2t} + 292, + 2f=0.
From these two equations we have
9= —a(l+tty+ b5t +¢ty) and 2f= —a[t,+ 8+t 4tgt,].
Substituting these values in (2), we obtain
=al (tt; + tyt, + tity).
The equation to the circle is therefore
2+ y? - ax (1 + sty + tyty + tyty) — ay (b + by -+ tg = tytsty)
+ a3 (tats + gl + 4ts) =0,
which clearly goes through the foous (a, 0).

288. If O be any point on the axis and POP' be any chord
passing through O, and if PM and P’M’ be the ordinates of P and P,
prove that AM . AM'= 403 and PM .PM'= -4a.40.

Let O be the point (A, 0), and let P and P’ be the points

(at3, 2at,) and (at;?, 2aty).

The equation to PP’ is, by Art. 229,

(tg+t) y - 2z=2atyty,

If this pass through the point (k, 0), we have

~2r=2atyt,,

t.e. = - g.
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3
Henoe  AM.AM'=at?.at}=ct. G =W=40%,

and  PM.PM'=3at,.%t,. =4a* ( - "—:)z —4a. 40.

Cor. If O be the focus, 40=a, and we have
tity= -1, d.c. ty= =

The points (at,?, 2at;) and ( b ‘1 ) are therefore at the ends
of a focal chord.

284. To prove that the orthocentre of any triangle formed by
three tangents to a parabola lies on the directriz.

Let the equations to the three tangents be

SEMHEBF — iiieeirniieiiitarneeeeeaes 1),
y=ma+_ (1)
y=myr+ — (2)
e ,

a
and = d o rreirereretereerraeeaanas 3).
m y=mat+ o G

b’ﬁhe point of intersection of (2) and (3) is found, by solving them,

o ()}

The equation to the straight line through this point perpendicular
to (1) is (Art. 69)

|
My My my
. 1 1 a
i.e. y+——a — et —t—— | (4).
™ Mg My MMy

Slmllnrly, the equation to the stmlght line through the intersection
of (3) and (1) perpendicular to (2) is

y-{:—:a( 1 a ) ..................
My my o my "‘1"‘:"‘:

and the equation to the straight line through the intersection of (1)
and (2) perpendicular to (3) is

+——a(—1—+l+L) (6)
Y ﬂl,— My g mgmgmy ) T .

The point which is common to the straight lines (4), (5), and (6),

~
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i.e. the orthooentre of the triangle, is easily seen to be the point
whose coordinates are

z=—a —a(1+1--l+ 1 )
=T VR T iy Ty T mmg
and this point lies on the directrix.

EXAMPLES. XXVIIL

1. If w be the angle which a focal chord of a parabola makes with
the axis, prove that the length of the chord is 4a cosec? w and that the
perpendicular on it from the vertex is a sin w.

9, A point on a parabola, the foot of the perpendicular from it
upon the directrix, and the foous are the vertices of an equilateral
triangle. Prove that the focal distance of the point is equal to the
latus rectum.

8. Prove that the semi-latus-rectum is & harmonic mean between
the segments of any focal chord.

4. If T be any point on the tangent at any point P of a parabola,
and if TL be perpendicular to the focal radius SP and T'N be perpen-
dicular to the direotrix, prove that SL=TN.

Hence obtain a geometrical construction for the pair of tangents
drawn to the parabola from any point T.

5. Prove that on the axis of any parabola there is a certain point
K which has the property that, if a chord PQ of the parabola be drawn
through it, then

1,1
PR QK3

is the same for all positions of the chord.

6. The normal at the point (at,?, 2at,) meets the parabola again
in the point (at,?, 2at,); prove that

h=-h-g

7. A chord is a normal to a pambola and is inclined at an angle
0 to the axis; prove that the area of the triangle formed by it and
the tangents at its extremities is 4a%sec? 6 cosec?® 6.

, If PQ be a normal chord of the parabola and if S be the focus,
prove that the locus of the centroid of the triangle SPQ is the curve

86ay? (3z — 5a) — 81y4=128at. ‘
9. Prove that the length of the intercept on the normal at the
point (at?, 2at) made by the circle which is described on the focal
distance of the given point as diameter is a \/1+¢%.
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10. Prove that the area of the triangle formed by the normals to
the parabola at the points (at,?, 2at,), (at,3, 2at,) and (aty?, 2at,) is

2 (- t) (- 1) (- t) ().

11. Prove that the normal chord at the point whose ordinate
is equal to its abscissa subtends a right angle at the focus.

12. A chord of a parabola passes through a point on the axis
(outside the parabola) whose distance from the vertex is half the
latus rectum ; prove that the normals at its extremities meet on the
curve.

13. The normal at a point P of a parabola meets the curve
again in Q,and T is the pole of PQ; shew that T lies on the diameter
passing through the other end of the focal chord passing through P,
and that PT is bisected by the directrix.

14. If from the vertex of a parabola a pair of chords be drawn at
right angles to one another and with these chords as adjacent sides a
rectangle be made, prove that the locus of the further angle of the
rectangle is the parabola

y*=4a (z - 8a).

15. A series of chords is drawn so that their projections on a
straight line which is inclined at an angle a to the axis are all of
constant length ¢ ; prove that the locus of their middle point is the
curve .
(3% - 4azx) (y cos a +2a sin a)3+a2c3=0.

16. Prove that the locus of the poles of chords which subtend a
right angle at a fixed point (k, k) is

az® - hy3+ (4a% + 2ah) z - 2aky +a (h*+ k?) =O0.

17. Prove that the locus of the middle points of all tangents

drawn from points on the directrix to the parabola is
y3 2z +a)=a(3z +a)?.
18. Prove that the orthocentres of the triangles formed by three

tangents and the corresponding three normals to a parabola are
equidistant from the axis.

19. T is the pole of the chord PQ; prove that the perpendiculars
from P, T, and Q upon any tangent to the parabola are in geometrical
progression,

- 20, If r, and 7, be the lengths of radii vectores of the parabola
vt;lhich are drawn at right angles to one another from the vertex, prove
at

"'1*":§ =16a? ('1‘ + r,‘)-

21. A parabola touches the sides of a triangle 4BC in the points
D, E, and F respectively ; if DE and DF cut the diameter through the
point 4 in b and ¢ respectively, prove that Bb and Cc are parallel.
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22. Prove that all circles described on focal chords as diameters
touch the directrix of the curve, and that all circles on focal radii as
diameters touch the tangent at the vertex.

, 28. A circle is described on a focal chord as diameter ; if m be the
tangent of the inclination of the chord to the axis, prove that the
equation to the circle is
22 +y3-2az 1+1 4oy ~8a%=0
m3 m )
24, LOL’ and MOM' are two chords of a parabola passing through
a point O on its axis. Prove that the radical axis of the circles

described on LI’ and MM’ as diameters passes through the vertex of
the parabola.

25. A circle and a parabola intersect in four points; shew that the
algebraic sum of the ordinates of the four points is zero.
S8hew also that the line joining one pair of these four points and
the line joining the other pair are equally inclined to the axis.

26. Circles are drawn through the vertex of the parabola to cut
the parabola orthogonally at the other point of intersection. Prove
that the locus of the centres of the circles is the curve

2 (23 + 2% - 12a2) =az (32 — 4a)’.

27. Prove that the equation to the circle passing through the
points (at;?, 2atll)mand (aty?, 2at)) and the intersection of the tan-
gents to the parabola at these points is

2yt —az[(t+1)* +2] - ay (b +8) (1 - 1ity) +a24 8y (2- 4 29) =0.

28. TP and TQ are tangents to the parabola and the normals at P
and Q meet at a point R on the curve ; prove that the centre of the
circle circumseribing the triangle TPQ lies on the parabola

2y?=a(z-a).

929, Through the vertex 4 of the parabola y*=4ax two chords 4P
and 4Q are drawn, and the circles on AP and AQ as diameters
intersect in R. Prove that, if 6,, 6,, and ¢ be the angles made with
the axis by the tangents at P and Q and by 4R, then

cot 6, + cot 6, + 2 tan ¢=0.

30. A parabola is drawn such that each vertex of a given triangle
is the pole of the opposite side ; shew that the focus of the parabola
lies on the nine-point circle of the triangle, and that the orthocentre of
the triangle formed by joining the middle points of the sides lies on
the directrix.



CHAPTER XI
THE PARABOLA (continued).

[On a first reading of this Chapter, the student may, with
advantage, omit from Art. 239 to the end.]

Some examples of Loci connected with the
Parabola.

285. BEx. 1. Find the locus of the intersection of tangents to the
parabola y*=4az, the angle between them being always a given angle a.

The straight line y =mz + % is always a tangent to the parabola.

If it pass through the point T (k, k) we
have -

mih-mk+a=0............ (1).

we :lllfa ;:l(in:;dArtm,. 1; the roots of this equation
my+my = ;—i ......... el 2)y
and mm, = % ............... 3),

and the equations to TP and TQ are then

y—m,:t+1 and y=myx+ a
m, my’
Henoe, by Art. 66, we have

tana = m-my — '\/(ml""'nﬁ)’—%m)

1+mm, 1+mm,

k3 4a
N B h_JP—ian '
Ry , by (2) and (3).

h




THE PARABOLA. LOCL 207

. K —4ah=(a+h)*tan%a.
Henoe the coordinates of the point T' always satisfy the equation
y3-daz=(a+z)*tanta.
‘Wae shall find in a later chapter that this curve is a hyperbola.

As a particular case let the tangents intersect at right angles, so
that mm,= - 1.

From (3) we then have h= - a, 8o that in this case the point T lies
on the straight line z= - a, which is the directrix.

Hence the locus of the point of intersection of tangents, which out
at right angles, is the directrix.
Bx. 2. Prove that the locus of the poles of chords which are normal
to the parabola y*=4az is the curve
y3(z + 2a) + 4a3=0.
Let PQ be a chord which is normal at P, Its equation is then
y=mz-2am—am?.........c........cce.ur... (1).

Let the tangents at P and Q intersect in 7', whose coordinates are
h and k, so that we require the locus of T.

8inoe PQ is the polar of the point (k, k) its equation is
YE=2a (Z4+h).corerrerreererreererennnn @).
Now the equations (1) and (2% represent the same straight line, so
that they must be equivalent.

m_zTa,and —2am - am’—z';h

Eliminating m, i.e. substituting the value of m from the firat ol
these equations in the second, we have

i.e. k3 (h+2a) + 4a2=0,
The locus of the point T is therefore
' y? (2 +2a) +4a=0.
Bx. 8. Find the locus of the middle points of chords of a parabola

which subtend a right angle at the vertez, and prove that these chords all
pass through a fized point on the azis of the curve.
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First Method. Let PQ be any such chord, and let its equation be

The lines joining the vertex with the
points of intersection of this straight line y
with the parabola

yi=4daz......ccc..... @),
are given by the equation
yic=4ax (y-mz). (Art. 122)
These straight lines are at right angles if
c+4am=0. (Art. 111)

Substituting this value of ¢ in (1), the

equation to PQ is

Y=m(T-4a)....ccceerveenrrinecrrrnnnnns

This straight line cuts the axis of z at a constant distance 4a from
the vertex, i.e. 44'=4a.

If the middle point of PQ be (A, k) we have, by Art. 220,

2a
k= ; ................................. (4)-
Also the point (h, k) lies on (3), so that we have
E=m(h=40)....conreeeeereererreerenne (5).

If between (4) and (5) we eliminate m, we have
k= 2T“ (h - 4a),

i.e k3=2a (h - 4a),
go that (k, k) always lies on the parabola
y?:=2a(z - 4a).

This is a parabola one half the size of the original, and whose
vertex is at the point 4’ through which all the chords pass.

Second Method. Let P be the point (at,?, 2at;) and Q be the point
(aty?, 2aty).
'i‘he tangents of the inclinations of AP and 4Q to the axis are
2 2
— and —.
4 Y
Since AP and AQ are at right angles, therefore
22_,
4t ’
i.e. Llg=—4.iiiiriiiiiiiiiiine e, 6).

As in Art. 229 the equation to PQ is
(B +t) y=2z+2atty..c..occvevrerrnnnnnnns (7.
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This meets the axis of z at a distance - at,t,,i.e., by (6), 4a, from
the origin.
Also, (h, k) being the middle point of PQ, we have
2h=a(t,®+1t,9),
and 2k=2a (t,+1,).
Hence k% - 2ah=a?(t,+t)* — a? (t,2+ ,2)
=2a?t,t,= — 8a?,
so that the locus of (k, k) is, as before, the parabola
y?=2a (z - 4a).

Third Method. The equation to the chord which is bisected at
the point (k, k) is, by Art. 221, :

k(y -k)=2a(z-h),
“i.e. ky—2ax=k—2ah.........c.ccoorrereren.. ®).

As in Art. 122 the equation to the straight lines joining its points
of intersection with the parabola to the vertex is

(%% - 2ah) y*=4azx (ky - 2az).
These lines are at right angles if
(k2 - 2ah) + 8a3=0.
Hence the locus as before.
Also the equation (8) becomes
ky — 2az= — 8a%.
This straight line always goes through the point (4a, 0).

EXAMPLES. XXIX,

From an external point P tangents are drawn to the parabola; find
the equation to the locus of P when these tangents make angles 6, and
6, with the axis, such that

1. tané,+tan @, is constant (=b).

. tan @, tan 6, is constant (=c).

. cot 6, + oot 6, is constant (=d).
6, + 0, is constant (=2a).

tan? 8, + tan? 6, is constant (=X\).
. cos 6, cos b, is constant (=x).

L. 14

S oo
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7. Two tangents to a parabola meet at an angle of 45°; prove that
the locus of their point of intersection is the curve

y3-4daz=(r+a)®
If they meet at an angle of 60°, prove that the locus is
y2 - 8a% - 10az - 3a*=0.

8. A pair of tangents are drawn which are equally inclined to a
straight line whose inclination to the axis is a ; prove that the locus
of their point of intersection is the straight line

y=(z - a)tan2a.

9. Prove that the locus of the point of intersection of two tangents
which intercept a given distance 4c on the tangent at the vertex is an
equal parabola.

10. Shew that the locus of the point of intersection of two tangents,

which with the tangent at the vertex form a triangle of constant area .

¢?, is the curve #* (y? - 4az) =4c%a?.

11. If the normals at P and Q meet on the parabola, prove that
the point of intersection of the tangents at P and Q lies aither on a
certain straight line, which is parallel to the tangent at the vertax, or
on the curve whose equation is y? (x + 2a) + 4a3=0.

12. Two tangents to a parabola intercept on a fixed tangent
segments whose product is constant; prove that the locus of their
point of intersection is & straight line.

13. Shew that the locus of the poles of chords which subtend a
constant angle a at the vertex is the curve
(x+4a)2=4 cot?a (y? — 4az).

14. In the preceding question if the constant angle be a right angle
the locus is a straight line perpendicular to the axis.

15. A point P is such that the straight line drawn through it
perpendicular to its polar with respect to the parabola y*=4az touches
the parabola z*=4by. Prove that its locus is the straight line

2az + by + 4a3=0,
16. Two equal parabolas, 4 and B, have the same vertex and axis

but have their concavities turned in opposlte directions ; prove that
the locus of poles with respect to B of tangents to 4 is the parabola 4.

17. Prove that the locus of the poles of tangents to the parabola
y?=4azx with respect to the circle 23+ y?=2az is the circle 22+ y*=az.

18, Shew the locus of the poles of tangents to the parabola
y?=4az with respect to the parabola y?=4bx is the parabola

yi= 4%2::.
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. Find the locus of the middle points of chords of the parabola

which
19. pass through the focus.
20. pass through the fixed point (A, k).
21. are normal to the curve.
22. subtend a constant angle a at the vertex.
23. are of given length .

24, are such that the normals at their exiremities meet on the
parabola.

25. Through each ggmt of the straight line ¢ =my+h is drawn
the chord of the parabola y3=4az which is bisected at the point;
prove that it always touches the parabola

(v - 2ampP=84 (z - h).
26. Two parabolas have the same axis and tangents are drawn to
the second from points on the first ; prove that the locus of the middle

points of the chords of contact with the second parabola all lie on a
fixed parabola.

" 27. Prove that the locus of the feet of the perpendiculars drawn
from the vertex of the parabola upon chords, which subtend an angle
of 45° at the vertex, is the curve

r'-24mooao+16<'z’eoa2o=0.

236. 7o prove that, in general, three mormals can be
- drawn from any point to the parabola and that the algebraic
sum of the ordinates of the feet of these three mormals is
zero. )

The straight line
y=mx—2am —am® .................. (1)

is, by Art. 208, a normal to ‘the ‘
parabola at the points whose coordi- vy| p

nates are p
am?® and —2am....... (2).
If this normal passes through * X
the fixed point O, whose coordma.tes fo)
are i and %, we have #.%)
k =mh - 2am — am?, R
e am®+ (20 —h)m+k=0....ccccc..ou.. (3),
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This equation, being of the third degree, has three
roots, real or imaginary. Corresponding to each of these
roots, we have, on substitution in (1), the equation to a
normal which passes through the point O.

Hence three normals, real or imaginary, pass through
any point 0.

If m,, m,, and m; be the roots of the equation (3), we
have

my + my + my =0,

If the ordinates of the feet of these normals be y,, y,,

and y;, we then have, by (2),

%1+ Ya+ Ys=—2a (m, + my + my) = 0.

Hence the second part of the proposition.

‘We shall find, in a subsequent chapter, that, for certain
positions of the point O, all three normals are real; for
other positions of O, one normal only will be real, and the
other two imaginary.

287. Bx. Find the locus of a point which is such that (a) two of
the mormals drawn from it to the parabola are at right angles,
(B) the three normals through it cut the axis in points whose distances
Jrom the vertex are in arithmetical progression.

Any normal is y=mz - 2am—am3, and this passes through the
point (&, k), if

amd+ (20 -B) M4 k=0..ccooovrerenianrnnnenn ().
If then m,, my, and my be the roots, we have, by Art. 2,
My +mMg+mg=0,..c..oevirrnnnniiinnrinnnnnns (2),
a-—h
MMy + Mgy + MMy = s eerereeecenernens (3),
k
and Mg = = = oot (4).

(a) If two of the normals, say m, and m,, be at right angles, we
have mym,= -1, and hence, from (4), mg= ; .
The quantity 2 is therefore a root of (1) and hence, by substitution,
we have
ks k
p) +(2a - h)a+ k=0,
t.e. k=a (h - 3a).
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The locus of the point (h, ) is therefore the parabola y?=a (z - 8a)
whose vertex is the point (3a, 0) and whose latus rectum is one-quarter
that of the given parabola.

The student should draw the figure of both parabolas.

(8) The normal y=mz - 2am — am® meets the axis of z at a point
whose distance from the vertex is 2a+am? The conditions of the
question then give

(2a + am?) + (2a + amy®) =2 (2a + am,?),

ie. miEmB=2ml . .......oovviinrnnninnnnnn, (5).

If we eliminate m,, m,, and my; from the equations (2), (3), (4),
and (5) we shall have a relation between % and k.

From (2) and (3), we have

2a-h
< =mymg+my (M +mg)=mmg—my? ............ (6).
Also, (5) and (2) give
= (my +mg)? — 2mymy=my? — 2mymy,
i.e. m,’+2mlm,3=0.........T .................... (7).

Solving (6) and (7), we have

2a-h o
8a

gy = 2—%‘, and my?= —-2x
Substituting these values in (4), we have

2a h \/ 22a ho_k
a
ie. 27ak’=2(h-2a)’,

so that therrequired locus is
27ay3=2 (x - 2a)%.

288. Bx. If the normals at three points P, Q, and R meet in a
point O and S be the focus, prove that SP.SQ.SR=a.S0%

As in the previous questxon we know that the normals at the
points (am?, —2am,), (amy? —2am,;) and (amg?, —2ams) meet in the
point (k, k) if

m1+m2+m,,—0 .............................. (1),
2a-h
. Mgy + mgm, +mymy = reeeerreereenneena(2),
k
and MMgMg= — — ..ieverirrcaernnnenenroneenns (3).

a

By Art. 202 we have
SP=a(1+mJ3), SQ=a(l+m?), and SR=a (1+my?).
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SP.SQ.SR
— a
=1 + (mll_l_m,! +m.!) + (m’Qm.2+ m,’ml’ + 1"’1’“1‘) + ml’m,’m,’.
Also, from (1) and (2), we have
2+ mg -+ mgd= (my + Mg+ my)? — 2 (mymy + Mgmy + MymM)
h- 2a
=2
a

Henoe =(1+m;?) (1+mg?) (1+my?)

and '
Mgtmg? + mytmy? + my*md = (momy + mym, +mymg)? — 2mymymg (m, + my -+ my)
(" 2") by (1) and (2).

2
SP'Sa?'SR_1+2h 2a+(h 2a\* k

Hence

_(h-ap+i_50°

a? a’’
i.e. SP.SQ.SR=802. a.

EXAMPLES. XXX,

Find the locus of a point O when the three normals drawn from
it are such that

1. two of them make complementary angles with the axis.

2. two of them make angles with the axis the product of whose
tangents is 2.

8. one bisects the angle between the other two.
4, two of them make equal angles with the given line y=mz +¢.

5. the sum of the three angles made by them with the axis is
constant.

6. the area of the triangle formed by their feet is constant.

7. - the line joining the feet of two of them is always in a given
direction.

The normals at three points P, Q, and R of the parabola yi=dax
meet in & point O whose coordinates are k and k; prove that

8. the centroid of the triangle PQR lies on the axis.

9. the point O and the orthocentre of the triangle formed by the
tangents at P, Q, and R are equidistant from the axis,

— e ——\
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10. if OP and OQ make complementary angles with the axis, then
the tangent at R is parallel to SO.

11. the sum of the interoepts which the normals cut off from the
axis is 3 (k+a).

. the sum of the squares of the sides of the triangle PQR.is
equal to 2(h - 2a) (h+10a).

13. the circle circumscribing the triangle PQR goes through the
vertex and its equation is 2x2+2y2— 2z (h+2a) - ky=0.

14. if P be fixed, then QR is fixed in direction and the locus of
the centre of the circle circumsecribing PQR is a straight line.

15. Three normals are drawn to the parabola y2=4az cos a from
any point lying on the straight line y=>bsina. Prove that the locus
of the orthocentre of t.he’ triangles formed by the corresponding tan-
gents is the curve %:+z—, =1, the angle a being variable.

16. Prove that the sum of the angles which the three normals,
drawn from any point O, make with the axis exceeds the angle which
the focal distance of O makes with the axis by a multiple of .

17. Two of the normals drawn from a point O to the curve make
complementary angles with the axis; prove that the locus of O and
the curve which is touched by its polar are parabolas such that their
latera reota and that of the original parabola form a geometrical
progression. Sketch the three curves.

18. Prove that the normals at the points, where the straight line
lz+my=1 meets the parabola, meet on the normal at the point

4am? 4am

- T of the parabola.

19. If the normals at the three points P, Q, and R meet in a point
and if PP/, QQ’, and RR’ be chords parallel to QR, RP, and PQ
respectively, prove that the normals at P, Q’, and R’ also meet in a
point.

20. If the normals drawn from any point to the parabola cut the
line z=2a in points whose ordinates are in arithmetical progres-
sion, prove that the tangents of the angles which the normals make
with the axis are in geometrical progression.

21. PG, the normal at P to a parabola, cuts the axis in G and is
produced to Q so that GQ=3}PG; prove that the other normals
which pass through Q intersect at right angles. )

22. Prove that the equation to the circle, which passes through the
focus and touches the parabola y®=4az at the point (at?, 2at), is

z3+y% - ax (3t2+1) — ay (3t - t°) + 3a3t3=0.
Prove also that the locus of its centre is the curve
27ay*=(2z - a) (z — 5a)%
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23, Shew that three circles can be drawn to touch a parabola and
also to touch at the focus a given straight line passing through the
focus, and prove that the tangents at the point of contact with the
parabola form an equilateral triangle. -

24. Through a point P are drawn tangents PQ and PR to a
parabola and circles are drawn through the focus to touch the para-
bola in Q and R respectively; prove that the common chord of these
circles passes through the centroid of the triangle PQR.

25. Prove that the locus of the centre of the circle, which passes
through the vertex of a parabola and through its intersections with a
normal chord, is the parabola 2y?=ax - a3,

28. A circle is described whose centre is the vertex and whose
diameter is three-quarters of the latus rectum of a parabola; prove
that the common chord of the circle and parabola bisects the distance
between the vertex and the focus.

927. Prove that the sum of the angles which the four common
tangents to a parabola and a circle make with the axis is equal to
nx +2a, where a is the angle which the radius from the focus to the
centre of the circle makes with the axis and » is an integer.

28. PR and QR are chords of a parabola which are normals at P
and Q. Prove that two of the common chords of the parabola and
the circle circumscribing the triangle PRQ meet on the directrix.

29. The two parabolas y2=4a (z-1) and z*=4a(y-!) always
touch one another, the quantities ! and I’ being both variable ; prove
that the locus of their point of contact is the curve zy=4al.

30. A parabola, of latus rectum I, touches a fixed equal parabola,
the axes of the two curves being parallel; prove that the locus of the
vertex of the moving curve is a parabola of latus rectum 24,

3]1. Thesides of a triangle touch a pa.mbola, and two of its angular
points lie on another parabola with its axis in the same direction ;
prove that the locus of the third angular point is another parabola.

239. In Art. 197 we obtained the simplest possible
form of the equation to a parabola.

‘We shall now transform the origin and axes in the
most general manner.

Let the new origin have as coordinates (%, k), and let
the new axis of « be inclined at 6 to the original axis, and
let the new angle between the axes be o'
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By Art. 133 we have for z and y to substitute
2 cos 6 + y cos (v + 0) + &,

and x8in 0 + ysin (o' +60)+ &
respectively.

The equation of Art. 197 then becomes

{xsin 0 + y sin (o’ + 0) + &} = 4a {x cos 6 + y cos (v’ + 6) + &},
t.e.
{e sin 0 + y sin (o + 6)}* + 22 {k sin 6 — 2a cos 6}
+ 2y {k sin (v’ + 6) —2a cos (o' + 6)} + K*— 4ah =0

This equation is therefore the most general form of the
equation to a parabola.

‘We notice that in it the terms of the second degree
always form a perfect square.

240. To find the equation to a parabola, any two
tangents to it being the axes of coordinates and the points of
contact being distant a and b from the origin.

By the last article the most general form of the equa-
tion to any parabola is
(Az+ By)* + 29z +2fy +c=0............ (1).

This meets the axis of = in points whose abscissae are
given by )
A%+ 292 +¢=0 ...ocovvinnnn.n. (2).

If the parabola touch the axis of x at a distance a from
the origin, this equation must be equivalent to

A (z—a)=0..cccoernniinnninnnes (3).
Comparing equations (2) and (3), we have
g=—A%, and c=A4%" ...............(4).

Similarly, since the parabola is to touch the axis of y
at a distance b from the origin, we have

S=—DB%, and ¢c=B%" ............... (5).
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From (4) and (5), equating the values of ¢, we have

B = A,
80 that B=+4 ‘g ..................... (6).

Taking the negative sign, we have

2
B=—42 3 9=—4%a, f=—A’%, and ¢ =A%*

Substituting these values in (1) we have, as the required
equation,

(a:——y) —2ax— 2by+a’ 0,

This equation can be written in the form

LAY AV ...
(E*z?) 2(a+b)+l‘ab’

Z.Y 1+ ry
oe atb 1242 ab’
= YY)
ie VARV
. x y
.€. ‘—z+\/5=1 .................. (8).

[The radical signs in (8) can clearly have both the positive and
negative signs prefixed. The different equations thus obtained corre-
spond to different portions of the curve. In the figure of Art. 243,
‘the abscissa of any point on the portion PAQ is <a, and the ordinate
<b, go that for this portion of the curve we must take both signs
positive. For the part beyond P the abscissa is >a, and i—:> % , 80
that the signs must be + and —-. For the part beyond Q the
ordinate is >b, and %>§, 8o that the signs must be — and +.
There is clearly no part of the curve corresponding to two negative
gigns.]
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241. If in the previous article we took the posxtwe
sign in (6), the equation would reduce to

z Y\ _o%_29 . .
<a+b) 2a b+1 0,

; z. ¥ _1)-
E+t-1)-

This gives us (Fig., Art. 243) the pair of coincident
straight lines PQ. This pair of coincident straight lines is

also a conic meeting the axes in two cothcident points at P
and @, but is not the parabola required.

242. To find the equation to the tangent at any point
(=, ¥') of the parabola

Vv

Let («”, ") be any point on the curve close to (2, ¥').
The equation to the line joining these two points is

J— Ny _ B
so that I/~ Iy <R (3)
The equation (1) is therefore
Ly NN VY
R i - Lt
or, by (3),
o Nb N+ Ny

N N Y @) (4).
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The equation to the tangent at («, ') is then obtained
by putting «” =2’ and " =¥/, and is

i, :/%_w_—,+7%=~/§+\/%=1 ......... ).

This is the required equation.

[In the foregoing wg have assumed that (z', y’) lies on the portion
PAQ (I“lg Art. 243). " If it lie on either of the other portions the
proper signs must be affixed to the radicals, as in Art, 240.]

Bx. Tofind the condition that the straight zim§,+’§’=1my be a
tangent.

This line will be the same as (5), if

f= =.faz’ and 9= ,,/ 'y

go that \/;——, and \/? g,

Hence _+
B b= .

This is the required condition; also, since .'c:’=f;1l and y’=%,

g
the point of contact of the given line is ( , b)
Slmxluly, the straight line lzr+my=mn will touch the parabola if

id =1.

al + om bm
243. To find the focus of the parabola

xT y_
\/;+\/b:_l

Let § be the focus, O the origin, and P and @ the
points of contact of the parabola with the axes.

Since, by Art. 230, the triangles OSP and QSO are
similar, the angle SOP = angle SQO.

Hence if we describe a circle through 0, @, and S, then,
by Eue. 1m1. 32, OP is the tangent to it at O.
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Hence S lies on the circle passing through the origin

O, the point @, (0, b), and touching the axis of = at the
origin.

The equation to this circle is

B+ 2xycosw+yP=by....co.o.n... (1).
Similarly, since ¢ S0Q = SPO, S will lie on the circle

through O and P and touching the axis of y at the origin,
t.e. on the circle

. o + 2xy cos w + 3 = ax .
The intersections of (1) and (2) give the point required.
On solving (1) and (2), we have as the focus the point

. ) ( ab? a?h )
%r o+ 2ab cos o + b2’ a*+ 2ab cos @+ B2/’
244. To find the equation to the axis.
g i

If ¥V be the middle point of PQ, we know, by Art. 223,
that OV is parallel to the axis.

Now 7 is the point (‘3, f’).
: . 2’ 2
Hence the equation to OV is y = % .

The equation to the axis (a line through § parallel to
fhe OYV) is therefore

_ o by, ab? )
ar y a’+2aboos«n+b’_a< T a'+2abcosw + 0%/ °
10 ’l:.e¢

ay—ba::—————ab (@~ %)
a®+ 2ab cos w + B*°
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245. 7o find the equation to the directrix.

If we find the point of intersection of OP and a
tangent perpendicular to OP, this point will (Art. 211, v)
be on the directrix. .

Similarly we can obtain the pomt on 0Q whlch is on
the directrix.

A straight line through the point (f, 0) perpendicular
to 0X is

y=m(xz—f), where (Art. 93) 1 +m cos v =0.

The equation to this perpendicular straight line is
then

Z+Ycoso=L..ccooiiininiinnn (1).

This straight line touches the parabola if (Art. 242)

S S . .. . abcosow

atd cos«»_l’ ie if f—a+b005m'
The point (M?—— , 0) therefore lies on the directrix.

a + b cos w
. . abcos o \ . .

Similarly the point (0, Ftraceso ) is on it.

The equation to the directrix is therefore
z(a+bcosw)+y(b+acosw)=abcosw ....\..(2).

The latus rectum being twice the perpendicular distance
of the focus from the directrix = twice the distance of the

pomt

ab? a”b
(a’+ 2abcosw + b’ a+ 2ab cosm+b’)
from the straight line (2)
4a™? sin? o
= (@ + 2db cos w + B’
by Art. 96, after some reduction.

246. 7o find the coordinates of the vertex and the
equation to the tangent at the verter.
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The vertex is the intersection of the axis and the curve,
t.e. its coordinates are given by

y_=z_ a* - 1
A b— a— mb’ --------------- ( )o
x 2 2 2
and by (;_% ~ - F 120 (Art. 240),
. z y -
t. e by (‘;— 3 + 1) = ; .................. (2).
From (1) and (2), we have

ng[l__ a’—b? ]’= ab?® (b + a cos w)?
4 a® + 2ab cos o + b? (a® + 2ab cos o + b?)*’
a*b (a + b cos w)?
Y =@+ 2abcosw+ 5"
These are the coordinates of the vertex.
The tangent at the vertex being parallel to the directrix,
its equation is

ab? (b + a cos w)?
(a+bc03w)[ - a’+(2abcosw+)b’)’]

Similarly

a% (a + b cos w)?
+@racsay - G ] =0
t.e z + y = ab
" b+acosw a+bcosw a*+2abcosw+ b’

[The equation of the tangent at the vertex may also be
written down by means of the example of Art. 242.]

EXAMPLES. XXXI.

1. If a parabola, whose latus rectum is 4c, slide between two
rectangular axes, prove that the loous of its foous is z%y?=c3? (23+y2),
and that the curve traced out by its vertex is

y’ @+ y‘) =ct,
2. Parabolas are drawn fo touch two given rectangular axes and
their foci are all at a constant distance ¢ from the origin. Prove that
the locus of the vertices of these parabolas is the curve

a:;+y§=c§.
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8. The axes being rectangular, prove that the locus of the focus
2

of the parabola §+% - ) =4—:—i’ , a and b being variables such

that ab=c3, is the curve (22 +y%)2=c%y.

4. Parabolas are drawn to touch two given straight lines which
are inclined at an angle w; if the chords of contact all pass through
a fixed point, prove that

(1) their directrices all pass through another fixed point, and
(2) their foci all lie on a circle which goes through the intersection of
the two given straight lines.

5. A parabola touches two given straight lines at given points;
prove that the locus of the middle point of the portion of any tangent
which is intercepted between the given straight lines is a straight
line.

6. TP and TQ are any two tangents to a parabola and the
tangent at a third point R cuts them in P’ and Q’; prove that -

TP TQ_ QU _TIP QR
7Pt T¢~ 1 * Qr=Fp~ RP"

7. If a parabola touch three given straight lines, prove that each
of the lines joining the points of contact passes through a fixed point.

8. A parabola touches two given straight lines; if its axis pass
through the point (k, k), the given lines being the axes of coordinates,
prove that the locus of the focus is the curve

ot y3— ho + ky =0.

9. A parabola touches two given straight lines, which meet at O,
in given points and a variable tangent meets the given lines in P and
Q respectively ; prove that the locus of the centre of the circumcircle
of the triangle OPQ is a fixed straight line.

10.  The sides 4B and AC of a triangle ABC are given in position
and the harmonic mean between the lengths 4B and AC is also given;
prove that the locus of the focus of the parabola touching the sides at
B and C is a circle whose centre lies on the line bisecting the angle
BAC.

11. Parabolas are drawn to touch the axes, which are inclined at
an angle w, and their directrices all pass through a fixed point (k, k).
Prove that all the parabolas touch the straight line

x y _
htksecw T k+h e L




CHAPTER XIL
THE ELLIPSE.

247. TaE ellipse is a conic section in which the
eccentricity e is less than unity.

To find the equation to an ellipse.

Let ZK be the directrix, S the focus, and let SZ be

perpendicular to the directrix.

K K'
M\ 1M'
Z _ 77 X

There will be a point 4 on $Z, such that
. SA=€.AZ........ouooenn... Q).

Since e <1, there will be another point 4’, on ZS produced,
such that

L. 15
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Let the length 44’ be called 2a, and let C' be the middle
point of 44°. Adding (1) and (2), we have
2a=AA'=e(AZ+A4'Z)=2.¢.CZ,

a

.6 CZ= ; ........................ (3).

Subtracting (1) from (2), we have
e(Ad'Z~-AZ)y=84'-8SA=(8C+C4')-(C4 -CS),
s.e. e. A4’ =2CS,
and hence C8=a.e.ueenienennnnn... (4).

Let C be the orighn, (4’ the axis of «, and a line through
C perpendicular to 44’ the axis of y.

Let P be any point on the curve, whose coordinates are
2 and y, and let PM be the perpendicular upon the directrix,
and PN the perpendicular upon 44’.

The focus S is the point (—ae, 0).
The relation SPi=¢*. PM*=¢. ZN* then gives

(a:+a.e")ﬂ+y’=e’ a:+26>’, (Art. 20),

ie B(l-e)+y=a' (1 -¢)
. < ¥y
t.6. ‘? + GT(].——:O’) =1 ciiiiiiiiiiin, (5).
If in this equation we put x=0, we have
3/ = i'. @ N 1- e'r

shewing that the curve meets the axis of ¥ in two points,
B and B, lying on opposite sides of C, such that

BC=CB=aNT—¢, ie. CB'=C4'-CS"
Let the length CB be called b, so that
b=an1-¢"
The équation (5) then becomes
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248. The equation (6) of the previous article may be

written

y -1 o _d&-a (a+a)(a- a:)

3T T 3 0

b a? a? &
. PN? AN.N4A'
t.6. —— T ——

b’ “’ I

%6 PN? : AN.NA' :: BC* : AC.

Def. The points 4 and A’ are called the vertices of
the curve, 44’ is called the major axis, and BB’ the minor
axis, Also C is called the centre.

249. Since § is the point (—ae, 0), the equation to
the ellipse referred to S as origin is (Art, 128),
(z—ae)’ y’
at
The equation referred to A a8 origin, and 4X and a
perpendicular line as axes, is

@,y

& TeT
. a? P
1.6 -+ %:—- 7 =0,
Similarly, the equation referred to ZX and ZK as axes is,
since CZ = — L‘:

. ( e
e
T %:z

The equation to the ellipee, whose focus and direotrix are any
given point and line, and whose eccentricity is known, is easily
written down.

For example, if the focus be the pomt( -3, 8), the directrix be
the line 2z+ 8y +4=0, and the eccentricity be ¢, the required equa-

tion is 4
22+ 8y +
(e+ap ey -ap=p Bl
ie. 2612% + 181y - 1922y + 1044 — 2334y + 3969 =0.

16—2
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Generally, the equation to the ellipse, whose focus is the point
(f, ), whose directrix is Az+By+C=0, and whose eccentricity

is e, is .
(o= +ly-gp=a UL P,

280. There exist a second focus and a second directrix
Jor the curve.

On the positive side of the origin take a point S’, which
is such that SC = CS’ = ae, and another point Z”, such that

zc':cz':g.

Draw Z'K’ perpendicular to ZZ', and PM’ perpen-
dicular to Z'K’.
The equation (5) of Art. 247 may be written in the
form
2 — 2aex + a’¢* + y* = e*2® - 2aex + af,

a 2
s.e. (x—ae)’+y’=e’(;-a:) )
s.e. S'PP=¢.PM"
Hence any point P of the curve is such that its distance
from S’ is e times its distance from Z'K’, so that we should

have obtained the same curve, if we had started with §" as
focus, Z'K’ as directrix, and the same eccentricity.

281. The sum of the focal distances of any point on the
curve 18 equal to the major axis.
For (Fig. Art. 247) we have
SP=¢.PM, and S'P=¢.PM'.
Hence
SP+8'P=e(PM+PM)=e. MM’
=e.22"=2¢.CZ =2a (Art. 247.)
= the major axis.
Also 8P =¢.PM=¢.NZ=¢.CZ+e¢.CN =a + ex’,
and 8P=¢.PU'=¢.NZ' =¢.CZ'-¢.CN=a—ex,
where «' is the abscissa of P referred to the centre.
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252. Mechanical construction for an ellipse.

By the preceding article we can get a simple mechanical
method of constructing an ellipse.

Take a piece of thread, whose length is the major axis
of the required ellipse, and fasten its ends at the points §
and 8§’ which are to be the foci.

Let the point of a pencil move on the paper, the point
being always in contact with the string and keeping the
two portions of the string between it and the fixed ends
always tight. If the end of the pencil be moved about on
the paper, so as to satisfy these conditions, it will trace out
the curve on the paper. Forthe end of the pencil will be
always in such a position that the sum of its distances from
&S and §’ will be constant.

In practice, it is easier to fasten two drawing pins at §
and &', and to have an endless piece of string whose total
length is equal to the sum of S§ and A4’'. This string
must be passed round the two pins at S and S”and then be
kept stretched by the pencil as before. By this second
arrangement it will be found that the portions of the curve
near 4 and 4’ can be more easily described than in the first
method.

253. Latus-rectum of the ellipse.

Let LSL' be the double ordinate of the curve which
passes through the focus S. By the definition of the curve,
the semi-latus-rectum SZ

=e times the distance of Z from the directrix
=e.87=e(CZ-C8)=e.CZ-¢.CS
=a— aé® (by equations (3) and (4) of Art. 247)

bﬂ
=2, (Art. 247.)
a
284. To trace the curve
o
A -’If_: S R M
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The equation may be written in either of the forms

y= +b\/l——-i— ................ 2),

or x=+a 1-— ................... (3).

From (2), it follows that if 2*>a? te. if x>a or <—a,
then y is impossible. There is therefore no part of the
curve to the right of 4’ or to the left of 4.

From (3), it follows, similarly, that, if y>b or <— b
« is impossible, and hence that there is no part of the curve
above B or below B'.

If = lie between —a and + g, the equation (2) gives two
equal and opposite values for y, so that the curve is sym-
metrical with respect to the axis of x.

If y lie between — b and + b, the equation (3) gives two
equal and opposite values for x, so that the curve is sym-
metrical with respect to the axis of y.

If a number of values in succession be given to z, and
the corresponding values of y be determined, we shall
obtain a series of points whieh will all be found to lie on a
curve of the shape given in the figure of Art. 247.

., xt oyt . .
288. The quantity ?+F—l 18 megative, zero, or

positive, according as the point («f, y') lies within, upon, or
without the ellipse.

Let @ be the point (#, y), and let the ordinate QN
through @ meet the curve in P, 8o that, by equation (6) of
Art, 247,

PN? x'?
o 1- T

If @ be within the curve, then ¥, t.e. QX, is < PN, so

that
2  PN? «*
% - te <1l— =
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Hence, in this case,

zl’ 7
@t <l
¢ ] %]
te. t——l, + %;—— 1 is negative.
Similarly, if @ be without the curve, y' > PN, and then
/2 %
:7 + % -1 is positive. ’

256. To find the length of a radius vector from the
centre drawn s a given direction.

The equation (6) of Art. 247 when transferred to polar
coordinates becomes

cos?0 ﬁmio _

T =b

373
giving pe 9P
b2 cos® 0 + a?sin® 0

‘We thus have the value of the radius vector drawn at any
inclination @ to the axis.

. a*h?
Since 7= BT (@) s’ we see that the greatest
value of 7 is when 6 =0, and then it is equal to a.
Similarly, 6 =90° gives the least value of », viz. b.

Also, for each value of 6, we have two equal and opposite
values of 7, so that any line through the centre meets the
curve in two points equidistant from it.

257. Auxiliary circle. Def. The circle which is
described on the major axis, 44', of an ellipse as diameter,
is called the auxiliary circle of the ellipse.

Let NP be any ordinate of the ellipse, and let it be
produced to meet the auxiliary circle in @.

Since the angle 4QA4’ is a right angle, being the angle
in a semicircle, we have, by Euc. v1. 8, QN?*=A4AN. N4’
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Hence Art. 248 gives
PN* : QN* :: BC? : AC?,
PN BC b

Y

B ™

The point @ in which the ordinate NP meets the
auxiliary circle is called the corresponding point to P.

The ordinates of any point on the ellipse and the

_ corresponding point on the auxiliary circle are therefore to

one another in the ratio b : a, t.e. in the ratio of the
semi-minor to the semi-major axis of the ellipse.

The ellipse might therefore have been defined as follows :

Take a circle and from each point of it draw perpen-
diculars upon a diameter ; the locus of the points dividing
these perpendiculars in a given ratio is an ellipse, of which
the given circle is the auxiliary circle.

258. Eccentric Angle. Def. The eccentric angle
of any point P on the ellipse is the angle ¥CQ made with
the major axis by the straight line C@ joining the centre C'
to the point @ on the auxiliary circle which corresponds to
the point P.

This angle is generally called ¢.
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We have CN=CQ.cosp=acosdg,
and NQ=CQsin p=asin ¢.

Hence, by the last article,

NP:;.NQ:bsind).

The coordinates of any point P on the ellipse are there-
fore a cos ¢ and b sin ¢.

Since P is known when ¢ is given, it is often called
« the point ¢.” ‘

289. To obtain the equation of the straight line joining
two potnts on the ellipse whose eccentric angles are given.

Let the eccentric angles of the two points, P and /, be
¢ and ¢', so that the points have as coordinates

(acos ¢, bsin ¢) and (acos ¢', bsin ¢').
The equation of the straight line joining them is
bsing¢' —bsin ¢
a cos ¢’ —a cos ¢

_b 2co8}(¢+¢)sin (¢~ )

y—bsin = (—acos )

“a Tsmp(g+ o) smpb—g) 0“0
.t G511y
_ "3 sy re) 0P
e
;cos‘#;‘ﬁ,+:'b£sin¢;¢'=cos¢oos¢;¢’+sin¢sin———¢;¢l
. =cos [¢o - ‘l’—;i] =cos ?:2—(# ........... (1).
This is the required equation.

Cor. The points on the auxiliary circle, corresponding to P and
P’, have as coordinates (a cos ¢, a sin ¢) and’(a cos ¢/, asin ¢').

The equation to the line joining them is therefore (Art. 178)

z  o+¢ Y . o+¢  o-¢
acosT +asm——-2 .-cos———2 .
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This straight line and (1) clearly make the same intercept on the
major axis.

Hence the straight line joining any two points on an ellipee, and
the straight line joining the corresponding points on the auxiliary
circle, meet the major axis in the same point.

EXAMPLES. XXXTI

1. Find the equation to the ellipses, whose centres are the
origin, whose axes are the axes of coordinates, and which pass
through (a) the points (3, 3), and (8, 1),
and (B) the points (1, 4) and (-6, 1).

Find the equation of the ellipse refexred to its centre

2. whose latus rectum is 5 and whose eocentrioity is §,

3. whose minor axis is equal to the distance between the foci and
whose latus rectum is 10,

4, whose foci are the points (4, 0) and (-4, 0) and whose
eccentricity is §. .

5. Find the latus rectum, the ecoentricity, and the coordinates
of the foci, of the ellipses -

(1) 2*+3y*=a, (2) 5z%+4y*=1, and (3) 9a%+5y?—30y=0.

6. Find the eocentricity of an ellipse, if its latus rectum be equal
to one half its minor axis.

7. Find the equation to the ellipse, whose focus is the point
(-1, 1), whose directrix is the straight line z - y+38=0, and whose
eccentricity is §.

8. Is the point (4, —3) within or without the ellipse

523+ Ty?=11?

9. Find thelengths of, and the equations to, the focal radii drawn

to the point (4,/3, 5) of the ellipse
2522 + 16y2=1600.

10. Prove that the sum of the squares of the reciprocals of two
perpendicular diameters of an ellipse is constant,

11. Find the inclination to the major axis of the diameter of the
ellipse the square of whose length is (1) the arithmetical mean,
(2) the geometrical mean, and (3) the harmonical mean, between the
squares on the major and minor axes,

12. Find the locus of the middle points of chords of an ellipse
which are drawn through the positive end of the minor axis,

13. Prove that the locus of the intersection of 4P with the
straight line through A’ perpendicular to 4’P is a straight line which
is perpendicular to the major axis.
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14. Q is the point on the auxiliary circle corresponding to P on
the ellipse; PLM is drawn parallel to CQ to meet the axes in L and X;
prove that PL=>5 and PM=a.

15. Prove that the area of the triangle formed by three points on
an ellipse, whose eccentric angles are 9, ¢, and y, is :

Prove also that its area is to the area of the triangle formed by the
oorresponding points on the auxiliary circle as b : a, and henoce that
its area is & maximum when the latter triangle is equilateral, i.c. when

$-0=y-g¢=r.

16. Any point P of an ellipse is joined to the extremities of the
major axis; prove that the portion of a directrix intercepted by them
subtends a right angle at the corresponding focus.

17. Shew that the perpendiculars from the centre upon all chords,
;vhich join the ends of perpendicular diameters, are of constant
ength.

18. If @, 8, v, and & be the eccentric angles of the four points of
intersection of the ellipse and any circle, prove that

a+8+7+3 is an even multiple
of » radians.

[SBee Trigonometry, Part II, Art. 31.]

19. The tangent at any point P of a circle meets the tangent at a
fixed point 4 in T, and T is joined to B, the other end of the
diameter through 4; prove that the locus of the intersection of 4P

and BT is an ellipse whose eccentricity is £

N2’
20. From any point P on the ellipse, PN is drawn perpendicular
to the axis and produced to Q, so that NQ equals PS, where S is a
focus; prove that the locus of Q is the two straight lines y +ex +a=0.

21. Given the base of a triangle and the sum of its sides, prove
that the locus of the centre of its incircle is an ellipse.

22. With # given point and line as focus and directrix, a series
of ellipses are described; prove that the locus of the extremities of
their minor axes is a parabola.

23. A line of fixed length a+ b moves so that its ends are always
on two fixed g:rpendionlar straight lines; prove that the locus of a
point, which divides this line into portions of length a and b, is an
ellipse.

24. Prove that the extremities of the latera recta of all ellipses,
having a given major axis 2a, lie on the parabola z*= —a (y - a).
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260. To find the intersections of any straight line with

the ellipse
o
' ;’ + ?‘I,;:'= 1 (1)
Let the equation of the straight line be
Y=MEHC.ennnnnininnnnnnnnnnn, (2)

The coordinates of the points of intersection of (1) and
(2) satisfy both equations and are therefore obtained by
solving them as simultaneous equations.

Substituting for y in (1) from (2), the abscissae of the
points of intersection are given by the equation

2 (mx+c)
&t b |
t.e. 2 (a*m? + b%) + 2a’mex + a® (2 — %) =0 ....... (3).

This is a quadratic equation and hence has two roots,
real, coincident, or imaginary.

Also corresponding to each value of x we have from (2)
one value of y.

The straight line therefore meets the curve in two points
real, coincident, or imaginary.

The roots of the equation (3) are real, coincident, or
imaginary according as
(2a*me)*—4 (b*+a’m?) x a? (c*—b?) is positive, zero, or negative,
i.e. according as b*(b*+a*m?)—b%c* is positive, zero, or negative,
t.e. according as ¢* is <= or > a*m® + b

261. To find the length of the chord intercepted by the
ellipse on the straight line y =max + c.

As in Art. 204, we have p

tme 2ame and _a*(-b)

By e L

2ab Na*m? + b* — ¢
80 that xl_x,=_a_,ﬁ"jﬁ_.
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The length of the required chord therefore
=N@E—mf + =)= (@ — =) ST+

_2abNT+m Jam s B¢
a*m? + b?

262. 7o find the equation to the tangent at any point
(&, ¥') of the elipse.

Let P and Q be two points on the ellipse, whose coordi-
nates are (¢, y) and (=", ).

The equation to the straight line PQ is

,___.’/”"'.'/' ’
y—y_h:,,—_—:;,(x—-x) ............... (1).

x'a r
+5=T1 (),
xng Y
and %7+ ¥ =1 (3)
Hence, by subtmction,
o'~
al + 3/_5’ 3/_ =0,
G, WG @)@ )
.. = - ,
4
ie. y"” y b2+

a" — o y+y

On substituting in (1) the equation to any secant P@Q
becomes
,__ P+ (@)
y-¥=-a yu Fy TTE) e

To obtain the equation to the tangent we take @
indefinitely close to P, and hence, in the limit, we put
o'=2 and y' =y
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The equation (4) then becomes
, 4 ’
R Al
swc x”
The required equa.tmn is therefore
xx'  yy
aHpr=1

Cor. The equation to the tangent is therefore ob-
tained from the equation to the curve by the rule of
Art. 152.

.6 =1, by equation (2).

263. 7o find the equation to a tangent in terms of the
tangent of its wnclination to the major axis.
As in Art. 260, the straight line

meets the ellipse in points whose abscissae are given by
2" (b® + am?) + 2mea’c + a* (2 — b%) = 0,

and, by the same article, the roots of this equation are
coincident if

c=a'm? +b%
In this case the straight line (1) is a tangent, and
it becomes
y=mx+4 Jamifbe............... (2)
This is the required equation.

Since the radical sign on the right-hand of (2) may
have either + or — prefixed to it, we see that there are two
" tangents to the ellipse having the same m, i.e. there are
two tangents parallel to any given direction.

The above form of the equation to the tangent may be deduced
from the equation of Art. 262, as in the case of the parabola
(Art. 208). It will be found that 'the pomt of contact is the point

(,\/a—’r:::‘-b’ ~/a’m’+ b’)
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264. By a proof similar to that of the last article, it

may be shewn that the straight line
zcosa+ysina=p
touches the ellipse, if
p*=alcost a+bisinia.
Similarly, it may be shewn that the straight line
le+my=n

touches the ellipse, if a%? + b*m?=n?

266. ZFEquation to the tangent at the point whose
eccentric angle is ¢.

The coordinates of the point are (@ cos ¢, b sin ¢).

Substituting «’ = a cos ¢ and y’ = bsin ¢ in the equation
of Art. 262, we have, as the required equation,

v;cos¢+slin¢=1 ............... 1.

This equation may also be deduced from Art. 259.

For the equation of the tangent at the point “¢” is
obtained by making ¢'= ¢ in the result of that article.

Bx. Find the intersection of the tangents at the points ¢ and ¢'.
The equations to the tangents are

z Y. _
acos¢+3ﬂm¢—1_0,
z 'Y ging —1=

and aoos«p +b sing¢' —1=0,

The required point is found by solving these equationa,
We obtain
z y
a b -1 1
Sng-Bng COSP —COBP Sin g coBP—COBQ BN BN (p-9¢)’
t.e.

z Y 1
2acoa¢+¢ u 2bm¢+¢ 2—2 2lin¢ ¢ "6;"6
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_, 008} (p+9¢) sin } (¢+¢)
Hence =4 ooiio-9)" Vot (s-9)"
266. ZEquation to the normal a¢ the point (<, /).

The required normal is the straight line which passes
through the point (#, y') and is perpendicular to the
tangent, <.e. to the straight line

b Y
oy Yy’
Its equation is therefore
y-y =m(z-2)
~ 2,
where ( b-,; ——1, ie. m=;-:%:, (Art. 69).

The equation to the normal is therefore y — y' = % (z - 2),

X-X_y-y
x’ - y'
a? bt

t.e

26%7. Equation to the normal at the point whose eccentric
angle 18 ¢,
The coordinates of the point are a cos ¢ and bsin ¢.
Hence, in the result of the last article putting
o« =acos¢p and y' =bsin ¢,
z—acosd y— bsin ¢

it becomes Y =g
a b

.. ‘ B Y by 1

s.e. e a sng b

The required normal is therefore
ax sec ¢ — by cosec ¢ = a? — b3,

\.
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%268. Equation to the normal in the form y=mz+c.
The equation to the normal at (z', ¥') is, as in Art. 266,

ay
y= b’z -Y (~ - 1)
oy _’ ay’
Let B =M 80 that = itme .
9 »
Hence, since (z/, y’) satisfies the relation % + %; =1, we obtain
b¥m

V= Javrm
The equation to the normal is therefore
(2?-b)m
y=mz '\/“2 +bma’
This is not as important an equation as the eorrespondmg equa-
tion in the case of the parabola. (Art. 208.)

When it is desired to have the equation to the normal expressed
in terms of one independent parameter it is generally better to use
the equation of the previous article.

269. 70 find the length of the subtangent and sub-
normal.

. Let the tangent and normal at P, the point («, %),
meet the axis in 7' and @ respectlvely, and let PN be the
ordinate of P.

L. . 16
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The equation to the tangent at P is (Art. 262)

xx' ’ )

e LT (1).
To find where the straight line meets the axis we put .

=0 and have
a 2
®= s e CT_CN,
e CT.CN=a*=C4*.................. 2).

Hence the subtangent & T

a-—x’”

=CT-CN==—-o=
The equation to the normal is (Art. 266)

z—-2 y-y
—
o y
a* b

To find where it meets the axis, we put y =0, and have

] 3 _ 23
e C@ez=u-S-C"Cu o w-c.0N..(3)
a a

Hence the subnormal NG
=CN-CG=(1-¢)CN,
t.e. NG:NC:1-¢:1
0% :a’ (Art. 247.)
Cor. If the tangent meet the minor axis in ¢ and Pn
be perpendicular to it, we may, similarly, prove that
Ct.Cn=0%

270. Some properties of the ellipse.

(@) SG=e.SP, and the tangent and normal at P bisect the
external and internal angles between the focal distances of ‘P.

By Art. 269, we have CG =¢2z’.
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Hence - SG=SC+CG=ae+e*x’'=¢.8SP, by Art. 251.
" Also §'G=CS" - CG=c(a~ex)=e. S'P.
Hence SG:8'G-:: SP: S'P.
Therefore, by Euc. vi, 3, PG bisects the angle SPS'".
It follows that the tangent bisects the exterior angle between
SP and S'P.

(B) If SY and S'Y’ be the perpendiculars from the foci upon the
tangent at any point P of the ellipse, then Y and Y’ lie on the auziliary
circle, and SY . S'Y'=03. Also CY and S'P are parallel.

The equation to any tangent is
TCosa+yBina=P ...covvvviirieennnnn. 1),
where Pp=a/a%cos? a+b%sin? a (Art. 264).

The perpendicular SY to (1) passes through the point (- ae, 0)
and its equation, by Art. 70, is therefore

(z+ae)sina—ycosa=0 ........ccc.oeeen (2).
ba If Y be the point (h, k) then, since Y lies on both (1) and (2), we
ve
¥ €08 a + ksin a= y/a? cos? « + b3 sin’a,

and hein a—kcos a= —aesin a= — A/a®- 0¥ sin a.

Squaring and adding these equations, we have h?+ k2=a?, so that
Y lies on the auxiliary circle 23+ y?=a2

Similarly it may be proved that ¥’ lies on this circle.

Again S is the point (- ae, 0) and S’ is (ae, 0).

Hence, from (1), i

SY=p+aecosa, and S’Y=p—aecosa. (Art. 75.)

Thus SY. 8'Y =p?-al?cos?a
=a?cos? a + b3 8in? a — (a?- b%) cos? a
=b2
a?
m_a __a(a—eCN)
and therefore g T_ON ae=——m— .
cT a cY

* FT=a=e.CN"SP*

Hence CY and §'P are parallel. Similarly CY’ and SP are
parallel.

16—2

IBRAR
OF THi

UNIVE"BSITY
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(y) If the normal at any point P meet the major and minor ares
in G and g, and if CF be the perpendicular upon this normal, them
PF.PG=b? and PF.Pg=a?

The tangent at any point P (the point “¢"’) is
Zeos¢+%ain¢=1.
Hence PF=perpendicular from C upon this tangent
1 _ ab
cos? ¢ ain® T P pt+atsintig
a? »
The normal at P is

az

cos¢ sing

a?-b?
a

If we put y=0, we have CG= €08 .

a’ -

3
abzcosq:) +bsin? ¢

~ PGi= (a CO8 ¢ —
=Z—;oos"¢+b’ sin? ¢,

i.e. PG=% /% cos® ¢ + a? 8in? .

From this and (1), we have PF.PG =0}
If we put =0 in (2), we see that g is the point

(073 sng).

. a?-? . 2
Hence Pg’:a’cos’¢+(bm¢+—~6— sin ¢) ,

so that Pg=;~: Ab3cos? ¢+ a?sin? ¢.
From this result and (1) we therefore have
PF. Pg=a®

271. To find the locus of the point of intersection of
tangents which meet at right angles.
Any tangent to the ellipse is
y:m‘f"va"'nz"'b,,

and a perpendicular tangent is

——
y=—71-7‘w+,\/a'(——ﬂl‘) + 82
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Hence, if (&, Ic) be thelr pomt of intersection, we have

=N+ b (1),
and mk+h—~/a. +0MP (2).

If between (1) and (2) we eliminate m, we shall have a
relation between %A and k. Squaring and adding these
equations, we have

(% + &%) (1 + m?) = (a® + b%) (1 + m?),
.e. R+B=a*+b.
Hence the locus of the point (4, k) is the circle
?+yt=a’+0b?
t.e. a circle, whose centre is the centre of the elhpse, and
whose radius is the length of the line joining the ends

of the major and minor axis, This circle is called the
Director Circle.

EXAMPLES. XXXIII.

Find the equation to the tangent and normal

1. at the point (1, %) of the ellipse 422+ 9y2=20,

2. at the point of the ellipse 522+ 3y?=137 whose ordinate is 2,

3. at the ends of the latera recta of the ellipse 9%+ 16y2=144.

4, Prove that the straight line y =z +~/{, touches the ellipse
82+ 4y?=

5. Find the equations to the tangents to the alhpse 4224 3y2=5
which are parallel to the straight line y=3z+7.

Find also the coordinates of the points of contact of the tangents
which are inclined at 60° to the axis of z.

6. Find the eqm:tiom; to the tangents at the ends of the latera
recta of the ellipse ‘;i,; +%3=1, and shew that they pass through the
intersections of the axis and the directrices.

7. Find the points on the ellipse such that the tangents there
are equally inclined to the axzes. Prove also that the length of the
perpendicular from the centre on either of these tangents is

\/a’+b’
7"
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8. In an ellipse, referred to its centre, the length of the sub-
tangent corresponding to the point (3, 3t) is 3; prove that the
eocentricity is $.

9. Prove that the sum of the squares of the perpendiculars on

any tangent from two points on the minor axis, each distant \/a?— b2
from the centre, is 243

10. Find the equations to the normals at the ends of the latera

recta, and prove that each passes through an end of the minor axis if
eA+ed=1,

11. If any ordinate MP meet the tangent at L in Q, prove that
MQ and SP are equal,

12. Two tangents to the ellipse intersect at right angles; prove
that the sum of the squares of the chords which the auxiliary circle

intercepts on them is constant, and equal to the square on the line
joining the foei.

13. If P be a point on the ellipse, whose ordinate is y’, prove
that the angle between the tangent at P and the focal distance of P
is tan—! —b’—-, .

aey

14,z Shew that the angle between the tangenis to the ellipse
;-:+ z—, =1 and the circle 22+ y2=ab at their points of intersection is

22=b
tan :JE .

15. A circle, of radius r, is concentric with the ellipse; prove
that the common tangent is inclined to the major axis at an angle
b2
tan-1 1:,—_2_5 and find its length.

16. Prove that the common tangent of the ellipses
2y 2 a? y? 2z
atp=g mdpta+o=0

subtends a right angle at the origin.

17. Prove that PG.Pg=SP.S'P,and CG.CT=CS3

18. The tangent at P meets the axes in T' and ¢, and CY is the
perpendicular on it from the centre; prove that (1) Tt. PY=a%-1?,
an?(2) the least value of T't is a +b.

19. Prove that the perpendicular from the focus upon any tangent
and the line joining the centre to the point of contact meet on the
corresponding directrix.

20. Prove that the straight lines, joining each focus to the foot of
the perpendicular from the other focus upon the tangent at any
point P, meet on the normal at P and bisect it.
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21. Prove that the circle on any focal distance as diameter touches
the auxiliary circle.

22. Find the tangent of the angle bc’atween CP and the normal at
P, and prove that its greatest value is aa;bb’ .
23. Prove that th’e stl;ught line lz+my=n is a normal to the
(a
n

elhpse,xfT, +E=

24. Find the locus of the point of intersection of the two straight

ines 2 _ ¥ 4 ¢= 2L 4
hnes; b+t-0gnd“+b 1=0.

Pr(lwe also that they meet at the point whose eccentric angle is
2tan—1¢.

25. Prove that the locus of the middle points of the portions of

tangents included between the axes is the curve
a® b
at o =4.

26. Any ordinate NP of an ellipse meets the auxiliary circle in
Q; prove that the locus of the intersection of the normals at P and
Q is the circle 22+ yd=(a+d)3

27. The normal at P meets the axes in G and g; shew that the
loci of the middle points of PG and Gg are respectively the ellipses

w4
aarapt -”—_1 and a%%+ b=} (a*- b?)%

28. Prove that the locus of the feet of the perpendicular drawn
from the centre upon any tangent to the ellipse is

r®=adcos? 0+028in%0. [Use Art. 264.]
29. If a number of ellipses be described, having the same major

axis, but a variable minor axis, prove that the tangents at the ends of
their latera recta pass through one or other of two fixed points,

30. The normal GP is produced to Q, o that GQ=n. GP.

. . x3 y?
Prove that the locus of Q is the ellipse Fro—nap +oa=
31. 1If the straight line y=mz+c meet the ellipse, prove that the

equation to the circle, described on the line joining the points of
intersection as diameter, is

(a?m3+ b%) (22 +y?) + 2ma*cx — 2b%cy + c? (a® + b?) ~ a?? (1 4+ m?) =0,
32. PM and PN are perpendiculars upon the axes from any point

P on the ellipse. Prove that MN is always normal to a fixed
concentric ellipse.

1.
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33. Prove that the sum of the eccentric angles of the extremities
of a chord, which is drawn in a given direction, is constant, and
equal to twice the eccentric angle of the point at which the tangent is
parallel to the given direction.

34. A tangent to the elhpse pe + _1 meets the ellipse

2
a,+z,—a+b

in the points P and Q; prove that the tangents at P and Q are at
right angles.

272. To prove that through any given point (x,, y,)
there pass, in general, two tangents to am ellipse.

The equation to any tangent is (by Art, 263)
y=mz + M+ B (1),
If this pass through the fixed point (z,, ¥,), we have
9o — may = N A B, |
ie 9.® — 2mayy, + mta? = a¥m? + B3,
t.e. m? (2% — a*) — 2mayy, + (3,2 — 8% =0......... 2).

For any given values of 2, and g, this equation is in
general a quadratic equation and gives two values of m
(real or imaginary).

Corresponding to each value of m we have, by sub-
stituting in (1), a different tangent.

The roots of (2) are real and different, if
(= 29,)% = 4 (2% — a?) (y,% — b°) be positive,

t.e if b*x? + a%,* — a’? be positive,
t.e. if x‘ + % ~ 1 be positive,

t.e. if the point (xl, ) be outside the curve.
The roots are equal, if
bx? + a%,? — a?b?

be zero, 4.e. if the point (z;, %) lie on the curve.
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The roots are imaginary, if

' '
| R
be negative, i.e. if the point (x,, y,) lie within the curve
(Art. 255).

273. ZEquation to the chord of contact of tangents
drawn from a point (x,, y,).

The equation to the tangent at any point ¢, whose
coordinates are &' and ¥/, is

m’ y’
= =l

Also the tangent at the point R, whose coordinates are
'’ and ¢”, is
m" yy
@ Tt
. If these tangents meet at the point 7', whose coordi-
nates are x, and y,, we have

oz |y
? +4 %: .................... (l),
and “’;—”ﬁ + ?!;;’/T S T ).

For, since (1) is true, the point (', %) lies on (3).

Also, since (2) is true, the point (", ") lies on (3).

Hence (3) must be the equation to the straight line
joining (', ¥') and (z”, "), t.e. it must be the equation to
@R the required chord of contact of tangents from (z;, ,).

274. To find the equation of the polar of the point
(%1, 1) with respect to the ellipse

A ST [Art. 162.]
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Let @ and R be the points in which any chord drawn
through the point (2,, ¥,) meets the ellipse [Fig. Art. 214].

Let the tangents at @ and R meet in the point whose
coordinates are (&, k).

‘We require the locus of (&, k).

Since QR is the chord of contact of tangents from
(k, k), its equation (Art. 273) is

xh gk
FtE=L
Since this straight line passes through the point (x,, %),
we have
"_;”;_ + % R Q).

Since the relation (1) is true, it follows that the point
(h, k) lies on the straight line

Hence (2) is the equation to the polar of the point
@5 %)
Cor. The polar of the focus (ae, o) is

x.ae
a!

. a
=1, t.e. = 3!
s.e. the corresponding directrix.

275. When the point (x,, y,) lies outside the ellipse,
the equation to its polar is the same as the equation of the
chord of contact of tangents from it.

‘When (#,, #,) is on the ellipse, its polar is the same as
the tangent at it.

As in Art. 215 the polar of (x,, y,) might have been
defined as the chord of contact of the tangents, real or
imaginary, drawn from it.

276. By a proof similar to that of Art. 217 it can be
shewn that If the of P pass through T, then the polar
of T passes through P.
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277. To find the coordinates of the pole of any given
line
Az +By+C=0 ...cccuvennn.nn. ).
Let (x,, ¥,) be its pole. Then (1) must be the same as
the polar of (z,, v,), i.e.

DB 1-0 ).
Comparing (1) and (2), as in Art. 218, the required pole

is easily seen to be
Aa? __116_')
% -7)

278. To find the equation to the pair of tangents that
can be drawn to the ellipse from the point (x,, ).

Let (k, k) be any point on either of the tangents that
can be drawn to the ellipse.

The equation of the straight line joining (&, k) to
(@ %) is
% ( = — a:l)’
-
; gk, ke
i.e y~h_xla:+ hw

If this straight line touch the ellipse, it must be of the
form

_k
?/“?/1—~h

y=mz+am?+ B  (Art. 263.)

Hence
Ili_.yla and hy,-—laz:l ’=a’m’+b’.
hy!"'kxl 2 k =%
Hence (h—a:,) =a? fy “a) + b2

But this is the condition that the point (%, £) may lie
on the locus
(@ —zy) =a’ (y — )" + 8 (@ — )" ... (1)-

This equation is therefore the equation to the required
tangents.
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It would be found that (1) is equivalent to
(G§1) G- ().

279. To find the locus of the middle points of parallel
chords of the ellipse.

Let the chords make with the axis an angle whose
tangent is m, so that the equation to any one of them,.
QR, is

where c is different for the different chords.

This straight line meets the ellipse in points whose
abscissae are given by the equation
«*  (mz+c)?
at @ b
e a2 (a¥m® + b*) + 2a*mex + a® (¢* — ) =0 ...... (2).
Let the roots of this equation, ¢.e. the abscissae of Q
and R, be x, and x,, and let V, the middle point of QR, be

the pomt (h, k).
Then, by Arts. 22 and 1, we have
+ &y a*me
R=225 = P (3).
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Also V lies on the straight line (1), so that

k=mh+c...cc..ococoevniennnn. (4)
If between (3) and (4) we eliminate ¢, we have
he - a’m (k — mh)
"= am?+ b’
i.e. Vh=—amk ..coooocooviiiia. (5).
Hence the point (%, k) always lies on the straight line
b2
Y=- ;"’?1;; X oveiienniiiineaionnnns (6).
The required locus is therefore the straight line
bﬂ
y=mx, where m,=— pg
b?
i.e MM == ciiiieiniiiaiaan )

280. Equation to the chord whose middle point is (h, k).

The required equation is (1) of the foregoing article, where m and
c are given by equations (4) and (5), so that
_ a3+ 13
T a%
The required equation is therefore

bh . a?k?+ B2
y=-m st g

3
m=-z.—‘g, and ¢

. k 13
i.e. b—,(y—k)+;,(z-h)=0.
It is therefore parallel to the polar of (&, k).

281. Diameter. Def. The locus of the middle
points of parallel chords of an ellipse is called a diameter,
and the chords are called its double ordinates.

By equation (6) of Art. 279 we see that any diameter
passes through the centre C.

Also, by equation (7), we see that the diameter y = m,x
bisects all chords parallel to the diameter y = ma, if

2
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But the symmetry of the result (1) shows that, in this
case, the diameter y =mx bisects all chords parallel to the
diameter y =myr.

Such a pair of diameters are called Conjugate Diameters.
Hence

Conjugate Diameters. Def. Two diameters are
said to be conjugate when each bisects all chords parallel
to the other.

Two diameters y=max and y=m,x are therefore con-
Jjugate, if
b2
mm, = — .
282. The tangent at the extremity of any diameter is
parallel to the chords which it bisects.

In the Figure of Art. 279 let (', ') be the point P on
the ellipse, the tangent at which is parallel to the chord
@R, whose equation is -

Y=L A Convnnnnnnnnininiinnnnns (1)
The tangent at the point («, ¥/) is
m’ ’
=+ -"b_-'{ =1 e, (@)

Since (1) and (2) are parallel, we have

%’

az yl 1

i.e. the point (2, y’) lies on the straight line

bZ
Y=
But, by Art. 279, this is the diameter which bisects Q&
and all chords which are parallel to it.

Cor. Tt follows that two conjugate diameters C'P and
CD are such that each is parallel to the tangent at the
extremity of the other. Hence, given either of these, we
have a geometrical construction for the other,
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283. The tangents at the ends of any chord meet on the
diameter which bisects the chord.
Let the equation to the chord @R (Art. 279) be

Let T be the point of intersection of the tangents at @
and R, and let its coordinates be /% and £.

Since @R is the chord of contact of tangents from 7, its
equation is, by Art. 273,
xh  yk
e s JT— (2).

The equations (1) and (2) therefore represent the same
straight line, so that

b*h
==
t.e. (h, k) lies on the straight line
b2
Yy=— ‘?"' &,

which, by Art. 279, is the equation to the diameter bisect-
ing the chord QR. Hence 7' lies on the straight line C'P.

284. If the eccentric angles of the ends, P and D, of
pair of conjugate diameters be ¢ and ', then ¢ and ¢’ differ
by a right angle.

Since P is the point (a cos ¢, b sin ¢), the equation to
CPis

y=x.—tan...coiriiiiiininnn. (1)
So the equation to CD is
y=x.-tan ¢'...ociiiiinniinnnnn 2)
These diameters are (Art. 281) conjugate if
P tangtang'= -7,
t.e. if tan ¢ = — cot ¢’ = tan (¢’ =90°),

e, if P - =+90°.
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Cor. 1. The points on the auxiliary circle correspond-
ing to P and D subtend a right angle at the centre.

For if p and d be these points then, by Art. 258, we
have
. LpCA'=¢ and LdCA =¢'.
Hence

cpCd= dCA — LpCA'=¢ - ¢ =90,

Cor. 2. In the figure of Art. 286 if P be the point ¢,
then D is the point ¢ + 90° and D’ is the point ¢ — 90°.

285. From the previous article it follows that if 7 be
the point (@ cos ¢, b sin ¢), then D is the point
{a cos (90° + ¢), bsin (90° + @)} i.e. (—asin ¢, bcos ).
Hence, if PN and DM be the ordinates of P and D,
we have
NP CM CN MD
——=—-—, and — = ——.
b a a b
286. If PCP' and bQD’ be a pair of conjugate dia-
meters, then (1) CP? + CD? is'constant, and (2) the area of
the parallelogram formed by the tangents at the ends of these
diameters is constant.

1
K;Y

]
|
|
[}
[l
'
'
1
.
1
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Let P be the point ¢, so that its coordinates are a cos ¢
and bsin¢. Then D is the point 90°+ ¢, so that its co-
ordinates are

a cos (90° + ¢) and bsin (90°+ o),
.e. —asin¢ and b cos¢.
(1) We therefore have
CP? = a® cos® ¢+ b? sin® ¢,
and CD?=a?sin® ¢ + b® cos® .
Hence CP*+CD*=a*+¥?
= the sum of the squares of the semi-axes of the ellipse.
(2) Let KLMN be the parallelogram formed by the
tangents at P, D, P', and D’'.
By Euc. 1. 36, we have
area KLMN =4 . area CPKD
=4.CU.PK=4CU.CD,
where CU is the perpendicular from C' upon the tangent
at P.
' Now the equation to the tangent at P is

x Y . _
—cos¢+—bsm¢—1—0,
so that (Art. 75) we have

g 1 . ab _ab
B cos?¢p sin*¢ ~ Ja*sini¢ + b*cos’ ¢ - CD’
@ TR
Hence CU.CD=ab.

Thus the area of the parallelogram KLMN = 4ab,

which is equal to the rectangle formed by the tangents
at the ends of the major and minor axes.

287. The product of the focal distances of a point P is
equal to the square on the semidiameter parallel to the tangent
at P.

If P be the point ¢, then, by Art. 251, we have
SP=a+aecos ¢, and §'P=a— aecos ¢.
L 17
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Hence SP.8'P=a’—a’¢cos® ¢
=a'— (a*— b?) cos? ¢
=a’sin?® ¢ + b cos? ¢
=CD?

288. Bx. If Pand D be the ends of conjugate diameters, find

the locus of

(1) the middle point of PD,
(2) the intersection of the tangents at P and D,
and (3) the foot of the perpendicular from the centre upon PD.
P is the point (a cos ¢, bsin ¢) and D is (- a sin ¢, bcos ¢).
(1) If (x, y) be the middle point of PD, we have
acos ¢ —asin ¢ bein ¢+ bcos ¢
r=—a, -———2—— .
If we eliminate ¢ we shall get the required locus. We obtain

and y=

23y s g o
a2t F,:}[(oos«p—smq&) + (sin ¢+ cos8 ¢)?] =4.

The locus is therefore a concentric and similar ellipse.

[N.B. Two ellipses are similar if the ratios of their axes are the
same, 80 that they have the same eccentricity.]

(2) The tangents are
‘2cos¢+%sin¢.—_l,
—Zeing+? =

and gfing+ycosg 1

Both of these equations hold at the intersection of the tangents.
If we eliminate ¢ we shall have the equation of the locus of their
intersections. .
By squaring and adding, we have
P
atp
80 that the locus is another similar and concentric ellipse.
(3) By Art. 269, on putting ¢'=90°+ ¢, the equation to PD is

2 cos (45°+ ) +!bsin (45°+ )= cos 45°.

=2, :

Let the length of the perpendicular from the centre be p and let it
make an angle w with the axis. Then this line must be equivalent to

208w+ sin w=p.
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Comparing the equations, we have

0 . 0
oos(45°+¢)=‘fﬁ.w—;°ﬁ, and ﬁn(45o+¢)=bsmw;oa46 .

Hence, by squaring and adding, 2p*=a?c0s?®w + b3 sin?w, i.e. the
locus required is the curve

23— 30082 0+ b38in? 6, i.e. (2% +yY)i=alzd+ by,
289. ZEquiconjugate diameters. Let P and D be ex-
tremities of equiconjugate diameters, so that CP*= CD*
If the eccentric angle of P be ¢, we then have
a®cos? ¢ + b*sin® ¢ = a’sin? ¢ + b* cos? ¢,

giving tan® =1,
z.e. ¢ =45° or 135°.
The equation to C'P is then
b
y==. tan ¢,
. b
t.e CYEE o (1),

and that to CD is y=-— x-gcot b,

. _b
i.e Y=F @ (2).

If a rectangle be formed whose sides are the tangents
at 4, A', B, and B’ the lines (1) and (2) are easily seen to
be its diagonals.

The directions of the equiconjugates are therefore along
the diagonals of the circumscribing rectangle.

The length of each equiconjugate is, by Art. 286,

Y
-2

290. Supplemental chords. Def. The chords
joining any point P on an ellipse to the extremities, £ and
R', of any diameter of the ellipse are called supplemental
chords.

-Supplemental chords are parallel to conjugate diameters.
17—2
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Let P be the point whose eccentric angle is ¢, and &
and R’ the points whose eccentric angles are ¢, and
180° + ¢,.

The equations to PR and PR’ are then (Art. 259)

____.2 .'.Zs]_n¢,+¢l s¢——;¢‘..... (1),

and

® os¢+180°+¢‘+:2sm¢+1800+¢‘.=cos¢_180°_¢’
2 b 2 2 ’

. -8 ¢+¢1+ycoslh-;¢‘:sin¢;¢l...(2).

The “m” of the straight line (1) = _2 cot ¢_"2'35_1 .

The “m?” of the line (2) == ¢ + ‘l"

The product of these “m’s” = — I;—,, 80 that; by Art. 281,

the lines PR and PR’ are parallel to conjugate diameters.

This proposition may also be eagily proved geometrically.

For let ¥ and 7’ be the middle points of PR and PR’.

Since ¥ and C are respectively the middle points of RP and RR',
the line CV is parallel to PR, Similarly C¥” is parallel to PR.

Since CV bisects PR it bisects all chords parallel to PR, i.e. all
chords parallel to CV’. 8o CV’ bisects all chords parallel to CV.

Hence CV and CV’ are in the direction of conjugate diameters and
therefore PR’ and PR, being parallel to CV and CV' respectively, are
parallel to conjugate diameters.
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291. 79 find the equation to an ellipse referred to a
pair of conjugate diameters.

Let the conjugate semi-diameters be CP and CD (Fig.
Art. 286), whose lengths are a’ and &' respectively.

If we transform the equation to the ellipse, referred to
its principal axes, to CP and CD as axes of coordinates,
then, since the origin is unaltered, it becomes, by Art. 134,
of the form

Ax’+ 2Hxy + By'=1................ (1).
Now the point P, (&', 0), lies on (1), so that
Aad*=1...ccccoeiiiininnnns (2).
So since @, the point (0, '), lies on (1), we have
By =1.
Hence A=i and B=l.
a’® ’ I

Also, since CP bisects all chords parallel to CD, there-
fore for each value of x we have two equal and opposite
values of y. This cannot be unless / =0.

The equation then becomes

'
a—,,+%:=l.

Cor. If the axes be the equiconjugate diameters, the
equation is «* + y* = a’. 'The equation is thus the same in
form as the equation to a circle. In the case of the ellipse
however the axes are oblique.

292. Tt will be noted that the equation to the ellipse,
when referred to a pair of conjugate diameters, is of the
same form as it is when referred to its principal axes.
The latter are merely a particular case of a pair of conjugate
diameters.

Just as in Art. 262, it may be shewn that the equation
to the tangent at the point (', ¥') is

ml !
? + :%',—/2- =1

Similarly for the equé.tion to the polar.
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Bx. If QVQ’ be a double ordinate of the diameter CP, and if the
tangent at Q meet CP in T, then CV.CT'=CP2.

If Q be the point («/, y), the tangent at it is

zz'  yy
it yi=
ra
Putting y =0, we have x:% ,
a’? Cp?
e T=Z=7cv
i.e. CV.CT=CP3.

2
1. In the ellipse = + ¥°~1, find the equation to the chord which
passes through the point (2, 1) and is bisected at that point.

2. Find, with respect to the ellipse 422+ 7y?=8,
(1) the polar of the point (-4, 1), and
(2) the pole of the straight line 12z + 7y +16=0.

3, Tangents are drawn from the point (3, 2) to the ellipse
2%+4y®=9. Find the equation to their chord of contact and the
equation of the straight line joining (3, 2) to the middle point of this
chord of contact.

4. Write down the equation of the pair of tangents drawn to the
ellipse 3z?+293=5 from the point (1, 2), and prove tHat the angle
between them is tan—1 —5—5 . )

3 v}

5. In the ellipse ‘;%,+!:’—2
diameters which are conjugate to the diameters whose equations are

=1, write down the equations to the

z-y=0, z+y=0, y=%x, and y=£w.

6. Shew that the diameters whose equations are y +82=0 and
4y - =0, are conjugate diameters of the ellipse 3z%+4y%=5.

7. If the product of the perpendiculars from the foci upon the
polar of P be constant and equal to ¢?, prove tha$ the locus of P is the
ellipse b4a?(c?+ a%e?) + claty?=a'bs.

8. Shew that the four lines which join the foci to two points P
and Q on an ellipse all touch a circle whose centre is the pole of PQ.
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9. If the pole of the normal at P lie on the normal at @, then
shew that the pole of the normal at Q lies on the normal at P.

10. CK is the perpendicular from the centre on the polar of any
point P, and PM is the perpendicular from P on the same polar and
is produced to meet the major axis in L. Shew that (1) CK.PL=103,
and (2) the product of the perpendiculars from the foci on the polar

LM,

= .

‘What do these theorems become when P is on the ellipse ?

11. In the previous question, if PN be the ordinate of P and the
polar meet the axis in 7', shew that CL=¢3.CN and CT.CN=a3.

12, If tangents TP and T'Q be drawn from a point T, whose
coordinates are h and k, prove that the area of the triangle TPQ is

MoK N\t (R R
"’"(Eﬂ*?ﬂ'l) * aa“‘zva)'

and that the area of the quadrilateral CPTQ is

[ |
ab (a—i-l-p—l) .

13. Tangents are drawn to the ellipse from the poinf

a? -
(7= va2)s
prove that they intercept on the ordinate through the nearer focus a
distance equal o the major axis.

14. Prove that the angle between the tangents that can be drawn
from any point (z,, y;) to the ellipse is

ol vt
_12ab PR 1
PILETN ey

15. If T be the point (21, ), shew that the equation to the
straight lines joining 1t to the focl, S and S, is
(1 - zy))* — a%? (y - y,)*=0.
Prove that the bisector of the angle between these lines also

bisects the angle between the tangents TP and T'Q that can be drawn
from T, and hence that
LSTP=/8'TQ.

16. If two tangents to an ellipse and one of its foci be given, prove
that the locus of its centre is a straight line.

17. Prove that the straight lines joining the centre to the inter-
sections of the straight line y =mz + \/ a’m;-" s
conjugate diameters.

with, the ellipse are
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18. Any tangent to an elh’&se meets the director circle in p and d;
prove that Cp and Cd are in the directions of conjugate diameters of
the ellipse.

19. If CP be conjugate to the normal at Q, prove that CQ is
conjugate to the normal at P.

20. If afixed straight line parallel to either axis meet a pair of
conjugate diameters in the points K and L, shew that the circle
described on KL as diameter passes through two fixed points on the
other axis,

21. Prove that a chord which joins the ends of a pair of conjugate
diameters of an ellipse always touches a similar ellipse.

22. The eccentric angles of two points P and @ on the ellipse are
¢, and ¢,; prove that the area of the parallelogram formed by the
tangents at the ends of the diameters through P and Q is

4abcoseo (¢, — ¢y),
and hence that it is least when P and Q are at the end of conjugate
diameters. .

23. A pair of conjugate diameters ié produced to meet the
1i’ililregtrix; shew that the orthocentre of the triangle so formed is at
e focus,

24, If the tangent at any point P meet in the points L and L’
(1) two parallel tangents, or (2) two conjugate diameters,
prove that in each case the rectangle LP . PL’ is equal to the square
on the semidiameter which is parallel to the tangent at P.

25. A point is such that the perpendicular from the centre on its
polar with respect to the ellipse is constant and equal to ¢; shew that
its locus is the ellipse

2 1
_ atp=a
2 3
26. Tangents are drawn from any point on the ellipse % +‘3-'b—, =1

to the circle 23+ y3=12; prove that the chords of contact are tangents
to the ellipse a?z?+ b¥y3=14
1t 5 =21 1, prove that the lines joining the centre to the points
:ltli contact with the circle are conjugate diameters of the second
pse. .
27. COP and CD are conjugate diameters of the ellipse; prove that
the locus of the orthocentre of the triangle CPD is the curve

(b ot (e - B (b - o,
28. If circles be described on two semi-conjugate diameters of the

ellipse as dismeters, prove that the locus of their second points of
intersection i8 the curve 2 (x?+y?)2=a%3+b%3,




FOUR NORMALS TO AN ELLIPSE. 265

293. To prove that, in genmeral, four normals can be
drawn from any point to an ellipse, and that the sum of the
eccentric angles of their feet 18 equal to an odd mwltiple of
two right angles.

The normal at any point, whose eccentric angle is ¢, is

o Y e pg
o8 $ sin¢_a' bi=a’é.
If this normal pass through the point (4, £), we have

ah bk
Py Akl LS (1).

For a given point (%, k) this equation gives the
eccentric angles of the feet of the normals which pass
through (A, k).

Let tan%:t, 80 that
‘l—-tan’i’ 2(',n.n2
cos p= 2_1-¢ and sin ¢ 2 2
— se— =—, ;_:-———.
l+tan’% 1+8 l+tan’(—§ 1+8
Substituting these values in (1), we have
1+8 1+¢
oh Vg =
e bktt + 26 (ah + a'e®) + 2t (ah — a’e?) — Dk =0 ... (2).

Let ¢, t;, ¢;, and ¢, be the roots of this equation, so that,
by Art. 2, '

3
t1+tn+ta+td=—2ah%f ............ 3),
. bta+ bty + bty + boby + bty + 638, =0 ......... (4),
h—a’e
Uyl + Loty + Bty + tityty =— 2 pasd bka e (),

and tibabaa=—Lureeeeeneereerinnens (6).
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Hence (T'rigonometry, Art. 125), we have
(4’1 b, 4’: 4’4) 81—8 8 —8

totety l-s,+8 O

. #’1+¢z+¢:+¢4
) 2

=,

w

=nmw + -2- y
and hence bt Pt s+ d=(2n+1)7w

=an odd multiple of two right angles.

294. We shall conclude the chapter with some ex-
amples of loci connected with the ellipse.

Bx. 1. Find the locus of the intersection of tangents at the ends
of chords of an ellipse, which are of constant length 2c.

Let QR be any such chord, and let the tangents at Q and R meet
in a point P, whose coordinates are (h, k).

Since QR is the polar of P, its equation is
zh  yk

a? =t L -
The abscisse of the points in whwh this straight line meets the

ellipse are given by
zh\? k2 1 22
-a)=el"a)

(h’ K\ 2zh K2
a3

s U SO | %

+b2 ?“Fl—-b—a:().

If z, and z, be the roots of this equation, i.e. the abscissm of Q@

and R, we have
2ab3h a*(h® - K?)
Tt =y gpe 4 B =g -

404 [B3R3+ a? - a?b%] kP

o (g — zg)d= (2, + 2,)3 - 42y 7y = R+ .(2).
If g, and y, be the ordinates of Q and R, we have from (1)
zh k
el
h k
and % + !.%’_: s
so that, by subtraction,

b2h
Ya—-h= ~ &k (zg— ).

e —— ot )
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The condition of the question therefore gives

bih?
4= (23— 7))+ (y3 - 91)*= (1 + ﬁ’) (zy-x))?

4 (atk? + b*h?) (6343 + a?k? - a%?)
(*h3 - a3k3) » by (2).

Hence the point (&, k) always lies on the curve

23 y’ a’y’ b3z y
(3 5)= (5 + %) (G3+5),
which is therefore the locus of P,

Bx. 2. Find the locus (1) of the middle points, and (2) of the poles,
of normal chords of the ellipse.

The chord, whose middle point is (%, k), is parallel to the polar of
(h, k), and is therefore

(z-b) ,+(y k)-—=0 ........................ (1).
Ifthisbeanormal,ltmustbethesamens
azsecd—bycosecf=a3~B2..................... (2).

We therefore have
asec § -booseco a3-b?

T = "1_]3
a? f’ atp
ad K K
80 that cosf= B (@5 (— +
a sino=— > (B, 5
an T k(a?-1%) a’+b’)'

Hence, by the elimination of 6,

as bO\ /h® k3\2

F,‘i‘ F) & + lﬁ) =(a®- 0?2
The equation to the required locus is therefore

!.I.’)Q (‘_"_‘ + b_') =(a?- b3

Again, if (z,, y,) be the pole of the normal chord (2), the latter
equation must f)e equivalent to the equation

Comparing (2) and (3), we have
a*secd b%cosec 0o
L5t yl -

8o that l—cos’0+sm’0—( )(an lba)e’

—2,
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and hence the required locus is

g + :7:= (a% - 022,

3 0
Bx. 8. Chords of the ellipse ';—:, + %—2=1 always touch the concentric

2 3
and coazxal ellipse % + %;,:1 ; Jind the locus of their poles.
Any tangent to the second ellipse is

Let the tangents at the points where it meets the first ellipse meet
in (h, k). Then (1) must be the same as the polar of (k, k) with
respect to the first ellipse, i.e. it is the same as

zh  yk

ST -1=0 ).

8ince (1) and (2) coincide, we have
m_ -1 _Jadmiig
=1

T
at
B h — b
Henoce m=—a-§ %’ and ~/a2m2+ﬁ‘=f.
Eliminating m, we have
o Ut A2 bt
damtf=p

€.e. the point (A, k) lies on the ellipse
a? . B
;‘x’ + b] y’: 1,
2
{i.e. on a concentric and coaxal ellipse whose semi-axes are :— and IL;
respectively.

EXAMPLES. XXXV.

The tangents drawn from a goint P to the ellipse make angles 6,
and 6, with the major axis ; find the locus of P when

1. 6,+0, is constant (=2a). [Compare Ez. 1, Art. 235.]
2. tan 6, +tan 6, is constant (=c).

8. tan 6, - tan 6, is constant (=d).

4, tan?0,+tan? 0, is constant (=1\).
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Find the locus of the intersection of tangents
5. which meet at a given angle a.

6. if the sum of the eccentric angles of their points of contact
be equal to a constant angle 2a.

7. if the difference of these eccentric angles be 120°.

8. if the lines joining the points of contact to the centre be
perpendicular.

9, if the sum of the ordinates of the points of contact be equal to b.
Find the locus of the middle points of chords of an ellipse

10. whose distance from the centre is the constant length c.

11. which subtend a right angle at the centre.

12. which pass through the given point (, k).

13. whose length is constant (=2c).

14. whose poles are on the auxiliary circle.

15. the tangents at the ends of which intersect at right angles.

16. Prove that the locus of the intersection of normals at the
ends -of conjugate diameters is the curve

2 (a%22 + b%y?)3 = (a? - b%)? (a3 - b%Y?)2.

17. Prove that the locus of the intersection of normals at the ends
of chords, parallel {o the tangent at the point whose eccentric angle is
a, is the conic

2 (az sin a + by 008 a) (az cos a + by sin a) =(a? ~ b3)2 sin 2a cos? 2a.

. If_the chords be sarallel to an eqmoon;ugate diameter, the locus
is a diameter perpendicular to the other equiconjugate.

18. A parallelogra.m circumscribes the ellipse and two of its
oppdsite &omts lie on the straight lines z®=h?; prove that
the locus of the other two is the conic

73yt a2
& + P (1 - }T’) =1.
19. Circles of constant radius ¢ are drawn to pass through the

ends of & variable diameter of the ellipse. Prove that the locus of
their centres is the curve

(22 +97) (a%2® + 1% + a?b%) =c? (a%a? + %)

20. The polar of a point P with respect to an ellipse touches a
fixed circle, whose centre is on the major axis and which passes
through the centre of the ellipse. Shew that the locus of P is a
parabola, whose latus rectum is a third proportional to the diameter
of the circle and the latus rectum of the ellipse.

21. Prove that the locus of the pole, with respeot to the ellipse, of

any tangent to the auxiliary circle is the curve — b <+ v

(4—,,2‘
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22. Shew that the locus of the pole, with respect to the auxiliary
circle, of a tangent to the ellipse is a similar concentric ellipse,
whose major axis is at right angles to that of the original ellipse.

23. Chords of the ellipse touch the parabola ay?*= —2b%z ; prove
that the locus of their poles is the parabola ay?=2b%z,

24, Prove that the sum of the angles that the four normals
drawn from any point to an ellipse make with the axis is equal to
the sum of the angles that the two tangents from the same point
make with the axis.

[Use the equation of Art. 268.]

25. Triangles are formed by pairs of tangents drawn from any

point on the ellipse .

%% 4 by = (a%+ 59 to the ellipse 2+ ¥ =1,
and their chord of contact. Prove that the orthocentre of each such
triangle lies on the ellipse.

26. An ellipse is rotated through a right angle in its own plane
about its centre, which is fixed ; prove that the locus of the point of
intersection of a tangent to the ellipse in its original position with
the tangent at the same point of the curve in its new position is

(#24+99) (a¥+ - @8- V) =3 (o~ V1) ay.

27. If Y and Z be the feet of the perpendiculars from the foci
upon the tangent at any point P of an ellipse, prove that the tangents
at Y and Z to the auxiliary circle meet on the ordinate of P and that
the locus of their point of intersection is another ellipse.

28. Prove that the directrices of the two parabolas that can be
drawn to have their foci at any given point P of the ellipse and to
pass through its foci meet at an angle which is equal to twioce the
eccentric angle of P,

29. Chords at right angles are drawn through any point P of the
ellipse, and the line joining their extremities meets the normal in the
point Q. Prove tin:t Q is the s’an;e for all such chords, its

. . a%lcosa — a%be gin a
coordinates being pre s an pow el
Prove also that the major axis is the bisector of the angle PCQ,
and that the locus of @ for different positions of P is the ellipse
2ty (a2 - b’)’

a”m ® \a?+b?

— e — ——



CHAPTER XIII.

THE HYPERBOLA.

295. TaE hyperbola is a Conic Section in which the
eccentricity e is greater than unity.

To find the equation to a hyperbola.

Let ZK be the directrix, S the focus, and let SZ be
perpendicular to the directrix.

There will be a point 4 on 4Z, such that

[
x

rcarcce——tocaccans -
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Since ¢ > 1, there will be another point 4’, on SZ pro-
duced, such that
Sd'=e . A'Z...................... (2).

Let the length 44’ be called 2a, and let C be the middle
point of 44’
Subtracting (1) from (2), we have
2a=AA'=e. A'Z—¢. AZ
=¢[CA"+CZ]-¢e[CA—-CZ]=e.20Z,

@&

ie. 7 R vee (3).

Adding (1) and (2), we have
e(AZ+A'Z)=84"+ S4=2C8,
.e. e. A4 =2.CS,
and hence C8=ae....oeveniiiunirnruneenn. 4).

Let C be the origin, CSX the axis of x, and a straight
line C'Y, through C perpendicular to C X, the axis of y.

Let P be any point on the curve, whose coordinates are
« and y, and let P be the perpendicular upon the directrix,
and PA the perpendicular on 44’.

The focus § is the point (ae, 0).
_The relation SP*=¢*. PM*=¢*. ZN* then gives

@-my+¢=a[ —ET, -

we. 2 — 2aex + a’e® + y* = % — 2aex + @’
Hence 2} (e—1)-y2=a’(e*-1),
. a? s
L X8 ;’ - m) =1 iiiiiiiieane (5).

8Since, in the case of the hyperbola, e > 1, the quantity
a® (¢'— 1) is positive. Let it be called % so that the equa-
tion (5) becomes

x2 2
;_%F ...................... (6),
where P=d'¢-a'=C8"-C4°............... ("),

and therefore C8*=a+b%.ccceevieniiiniis (8)-
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296. The equation (6) may be written
y_ ?—a® (x—a)(zx+a)
= =TS

2 a? P a? ’
. PN? AN.NA
e B e
so that PN2: AN.NA' :: V°: a

If we put =0 in equation (6), we have y*=—"b%,
shewing that the curve meets the axis C'Y in imaginary
points.

Def. The points 4 and 4’ are called the vertices of the
hyperbola, C is the centre, 44’ is the transverse axis of the
curve, whilst the line BB’ is called the conjugate axis,
where B and B’ are two points on the axis of y equidistant
from C, as in the figure of Art. 315, and such that

BC=CB=b.

297. Since S is the point (ae, 0), the equation referred to the
focus as origin is, by Art. 128,
(x+ ae)? y’_l
@ ek
xﬂ
a?
Similarly, the equations, referred to the vertex 4 and foot of the
directrix Z respectively as origins, will be found to be

; L
i.e. +2a b2+e2 1=0.

22y %
> @ pta=0
2 y? 2 . 1
and d Bt a

The equation to the hyperbola, whose focus, directrix, and eccen-
tricity are any given quantities, may be written down as in the case
of the ellipse (Art. 249).

298. There exist a second focus and a second directrix
to the curve.

On SC produced take a point ', such that

A 8C =08’ =ae,
and another point Z’, such that
20=02'=2.
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Draw Z'M’ perpendicular to A4’, and let PM be pro-
duced to meet it in M’.

The equation (5) of Art. 295 may be written in the

form
2 + 2aex + a’e® + y* = °2* + 2aex + @7,
2
t.e. (w+ae)’+y’=e”(§+w) )
.. S'PP=(Z'C+CN)>=e*. PH™

Hence any point P of the curve is such that its distance
from S’ is e times its distance from Z'K’, so that we should
have obtained the same curve if we had started with §' as
focus, Z'K’ as directrix, and the same eccentricity e.

299. The dgﬂ'ereme of the focal distances of any point
on the hyperbola is equal to the transverse axis.

For (Fig., Art 295) we have

SP=e.PM, and S'P=¢.PM'.
Hence S'P—SP=e¢(PM'—-PM)=e. MM’
=e.272'=2¢.0Z=2a
_ = the transverse axis 44"

Also SP=¢.PM=¢.ZN=¢.CN—-¢.CZ=ex"—a,
and S§'P=e¢.PM'=¢.Z’N=¢.CN+e¢.Z'C=ex' +a,
where &' is the abscissa of the point P referred to the centre
as origin.

300. Latus-rectum of the Hyperbola.

Let LSL' be the latus-rectum, i.e. the double ordinate
of the curve drawn through S.

By the definition of the curve, the semi-latus-rectum SZ
= ¢ times the distance of L from the directrix
=e.8Z7=¢(C8-C2Z)
=e. CS—eCZ:a,e’—a,-_-g,

by equations (3), (4), and (7) of Art. 295.
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3801. 7o trace the curve

@2
‘;’ - ?2 = 1 ...................... (l).
The equation may be written in either of the forms
2
y= +p [li — 1 (2),
or r=%aqa 21{—: +1 . (3).

From (2), it follows that, if a? < a?, .e. if x lie between a
and —a, then y is impossible. There is therefore no part
of the curve between 4 and A'.

For all values of a?>a?® the equation (2) shews that
there are two equal and opposite values of y, so that the
curve is symmetrical with respect to the axis of x. Also,
as the value of x increases, the corresponding values of y
increase, until, corresponding to an infinite value of x, we
have an infinite value of y.

For all values of y, the equation (3) gives two equal
and opposite values to x, so that the curve is symmetrical
with respect to the axis of y.

If a number of values in succession be given to z, and
the corresponding values of y be determined, we shall
obtain a series of points, which will all be found to lie on a
curve of the shape given in the figure of Art. 295.

The curve consists of two portions, one of which extends
in .an infinite direction towards the positive direction of
the axis of x, and the other in an infinite direction towards
the negative end of this axis.
.ox? oy . ..

302. The quantity Pl i 1 3 positive, zero, or
negative, according as the point (x', y') lies within, upon,
or without, the curve.

Let @ be the point (#/, ¥), and let the ordinate QN
18—2
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through @ meet the curve in P, so that, by equation (6) of
Art. 295,

x® PN* 1
a o
PN?* g7
and hence e 1.
If Q be within the curve then ¥/, i.e. @V, is less than
y'i Nﬂ . x’?
PN, so that T e <?—l
2
Hence, in this case, % - F >0, t.e. is positive.
Similarly, if @ be without the curve, then g’ > PN, and
/2 ’2
we have 2-, -5 1 negative.

303. 7o find the length of any central radius drawn in
a given direction.
The equation (6) of Art. 295, when transferred to polar
coordinates, becomes
cos2 0 sin?0
7 - =1,

2 2
1 _cos 0 519’_0‘ cos 0(~———ta ,0)

i R
This is the equation giving the value of any central
radius of the curve drawn at an inclination @ to the trans-
verse axis.

So long as tan? @ < , the equation (1) gives two equal

and opposite values of » correspondmg to any value of 6.
3
For values of tan® 0>£—,, the corresponding values of

}j are negative, and the corresponding values of » imaginary.

Any radius drawn at a greater inclination than tan"t—f
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does not therefore meet the curve in any real points, so
that all the curve is included within two straight lines

drawn through C and inclined at an angle = tan~! T.b; to CX.

‘Writing (1) in the form
2
p—
cos’o(-—,—tan’O)
&

we see that r is least when the denominator is greatest, i.e.
when §=0. The radius vector C'4 is therefore the least.

Also, when tan 6= *g, the value of r is infinite.

For values of 6 between 0 and tan~! 2 the corresponding

positive values of » give the portion 4R of the curve (Fig.,
Art. 295) and the corresponding negative values give the
portion 4'R’.

For values of 6 between 0 and — tan™ 2—, the positive

values of R give the portion AR,, and the negative values
give the portion A'R/’.

The ellipse and the hyperbola since they both have a
centre C, such that all chords of the conic passing through
it are bisected at it, are together called Central Conics.

304. In the hyperbola any ordinate of the curve does
not meet the circle on 44’ as diameter in real points.
There is therefore no real eccentric angle as in the case of
the ellipse. ‘

‘When it is desirable to express the coordinates of any
point of the curve in terms of one variable, the substitutions

x=asec® and y=btan ¢
may be used; for these substitutions clearly satisfy the
equation (6) of Art. 295.
The angle ¢ can be easily defined geometrically.
On A4’ describe the auxiliary circle, (Fig., Art. 306)
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and from the foot N of any ordinate NP of the curve draw
a tangent NU to this circle, and join CU. Then

CU=CNcos NCT,

.. z=CN=asec NCU.
The angle NCU is therefore the angle ¢.
Also NU=CUtan ¢ =atan ¢,

so that NP:NU:b:a.

The ordinate of the hyperbola is therefore in a constant
ratio to the length of the tangent drawn from its foot to
the auxiliary circle,

This angle ¢ is not so important an angle for the
hyperbola as the eccentric angle is for the ellipse.

305. Since the fundamental equation to the hyper-
bola only differs from that to the ellipse in having — 5°
instead of &% it will be found that many propositions for
the hyperbola are derived from those for the ellipse by
changing the sign of %

Thus, as in Art. 260, the straight line y =ma + ¢ meets
the hyperbola in points which are real, comcldent, or
imaginary, according as

A>=<a'm*-p.
As in Art. 262, the equation to the tangent at (<, ) is
xz'  yy
P
As in Art. 263, the straight line
y =max + Nam?— b
is always a tangent.
The straight line
xcosa+ysina=p
is a tangent, if  p°=a®cos’a — b%sin?a.
The straight line Iz + my=mn
is a tangent, if n? = a?® — b*m?. [Art. 264.]
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The normal at the point («, y') is, as in Art. 266,
z—a y-y
—

= —

a8

-

306. With some modifications the properties of Arts.
269 and 270 are true for the hyperbola also, if the
corresponding figure be drawn.

In the case of the hyperbola the tangent bisects the
interior, and the normal the exterior, angle between the
focal distances SP and S'P.

It follows that, if an ellipse and a hyperbola have the
same foci § and S’, they cut at right angles at any common
point P. For the tangents in the two cases are respec-
tively the internal and external bisectors of the angle SPS’,
and are therefore at right angles.

307. The equation to the straight lines joining the
points (asec ¢, btan¢) and (asecqd, btang’) can be
shewn to be
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Hence, by putting ¢’ = ¢, it follows that the tangent at
the point (a sec ¢, b tan ¢) is
x Y.
2" pon ¢ =cos¢.

It could ¢ y be shewn that the equation to the

normal is
ax sin ¢ + by = (a® + b?) tan ¢.

808. The proposition of Art. 272 is true also for the
hyperbola.

As in Art. 273, the chord of contact of tangents
from (2, %) is

Y
a b
As in Art. 274, the polar of any point (z,, ¥,) is
™ _ Y _q
a b

As in Arts. 279 and 281, the locus of the middle
points of chords, which are parallel to the diameter y =ma,
is the diameter y = m,x, where

b2
mm, = ‘;’ .

The proposition of Art. 278 is true for the hyperbola

also, if we replace b by — b2

309. Director circle. The locus of the intersection
of tangents which are at right angles is, as in Art. 271,
found to be the circle #®+ y*=a?—b% 4.e. a circle whose
centre is the origin and whose radius is ./a?— b*.

If 5% < a3 this circle is real.

If 3 =a?, the radius of the circle is zero, and it reduces
to a point circle at the origin. In this case the centre is
the only point from which tangents at right angles can be
drawn to the curve.

If b > o the radius of the circle is imaginary, so that
there is no such circle, and so no tangents at right angles
can be drawn to the curve.
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310. Equilateral, or Rectangular, Hyperbola.

The particular kind of hyperbola in which the lengths
of the transverse and conjugate axes are equal is called an
equilateral, or rectangular, hyperbola. The reason for the
name “rectangular” will be seen in Art. 318.

Since, in this case, b = a, the equation tc Jhe equilateral
hyperbola, referred to its centre and axes, is «? — y* =a®

The eccentricity of the rectangular hyperbola is /2.

For, by Art. 295, we have, in this case,

2 2 2
6,=_a ;;b = % ::2,

so that e=,/2

811. Bx. The perpendiculars from the2 cen:re upon the tangent
and normal at any point of the hyperbola :—, - g—,:l meet them in Q
and R. Find the loci of Q and R.

As in Art. 308, the straight line

' zcosatysine=p
is a tangent, if p*=a?cos?a—b3sin? a.

But p and a are the polar coordinates of Q, the foot of the perpen-
dicular on this straight line from C. ’

The polar equation to the locus of Q is therefore

r2=a?%c0s? 6 - b2 gin? 9,
i.e., in Cartesian coordinates,
(@ +y7P=ate - b2,

If the hyperbola be rectangular, we have a=b, and the polar
equation is

72=a3 (cos? § — 8in? ) =a3 cos 26.
Again, by Art. 307, any normal is
azxsin ¢+ by=(a*+d?)tan¢..................... @.
The equation to the perpendicular on it from the origin is
br—aysin ¢=0....ccoceervnrrrreriennnnns 2).
If we eliminate ¢, we shall have the locus of R.

From (2), we have sing= i

ay’
sin ¢ bz
= i ¢~ Jary bia
Substituting in (1) the locus is
(=2+9?)2 (a?y® - b2%®) = (a®+ B2 22y2.

and then
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EXAMPLES. XXXVI

Find the equation to the hyperbola, referred to its axes as axes of
coordinates,

1. whose transverse and conjugate axes are respectively 3 and 4,

2. whose conjugate axis is 5 and the distance between whose foci
is 13,

3. whose conjugate axis is 7 and which passes through the point
(3' - 2):

4, the distance between whose foei is 16 and whose eccentricity
is \/2.

5. In the hyperbola 422- 9y2=36, find the axes, the coordinates
of the foci, the eccentricity, and the latus rectum.

6. Find the equation to the hyperbola of given transverse axis
whose vertex bisects the distance between the centre and the focus.

7. Find the equation to the hyperbola, whose eccentricity is §,
whose focus is (a, 0), and whose directrix is 4z - 3y =a.

Find also the coordinates of the centre and the equation to the
other directrix.

8. Find the Fointa common to the hyperbola 25z%-9y2=225
and the straight line 25z +12y —-45=0.

9. Find the equation of the tangent to the hyperbola 422 — 9y?=1
which is parallel to the line 4y =5z +17.

10. Prove that a circle can be drawn through the foci of a
hyperbola and the points in which any tangent meets the tangents at
the vertices.

11. An ellipse and a hyperbola have the same principal'axes.
Shew that the polar of any point on either curve with respect to the
other touches the first curve.

12. In both an ellipse and a hyperbola, prove that the focal
distance of any point and the perpendicular from the centre upon the
tangent at it meet on a circle whose centre is the focus and whose
radius is the semi-transverse axis,

13. Prove that the straight lines z - %:m and 2 +%’ =$‘ always
meet on the hyperbolsa.

14. Find the equatit;l.l to; and the lengt}x of, the common tangent
> y 2
to the two hyperbolas 2 572:1 and Z_” - 37*‘=1'
15. In the hyperbola 16z2-9y2=144, find the equation to the
diameter which is conjugate to the diameter whose equation is z=2y.
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16. Find the equation to the chord of the hyperbola
252% - 16 =400
which is bisected at the point (5, 3).
17. In a rectangular hyperbola, prove that
SP.S'P=CP3.

18. the distance of any point from the centre varies inversely as
the perpendicular from the centre upon its polar.

19. if thenormal at P meet the axes in G and g, then PG =Pg=PC.

20. the angle subtended by any chord at the centre is the

supplement of the angle between the tangents at the ends of the
chord.

21. the angles subtended at its vertices by any chord which is
parallel to its conjugate axis are supplementary.

: ] 2
22. The normal to the hyperbola :ai, - %,:1 meets the axes in M

and N, and lines MP and NP are drawn at right angles to the axes;
prove that the locus of P is the hyperbola
a%28 - by?=(a?+ b3)2
23. If one axis of a varying central conic be fixed in magnitude
and position, prove that the locus of the point of contact of a tangent
drawn to it from a fixed point on the other axis is a parabola.

24, If the ordinate MP of a hyperbola be produced to Q, so that
MQ is equal to either of the focal distances of P, prove that the locus
of Q is one or other of a pair of parallel straight lines.

25. -Shew that the locus of the centre of a circle which touches
externally two given circles is a hyperbola.

26. On a level plain the crack of the rifle and the thud of the ball
striking the target are heard at the same instant; prove that the
locus of the hearer is a hyperbola.

27. Given the base of a triangle and the ratio of the tangents of
half the base angles, prove that the vertex moves on a hyperbola
whose foci are the extremities of the base.

28. Prove that the locus of the poles of normal chords with
2

respect to the hyperbola g— !b’—,=l is the curve

y2al — 238 =(a%+ b%)% 222,
29. Find the locus of the pole of a chord of the hyperbola which
subtends a right angle at (1) the centre, (2) the vertex, and (3) the
focus of the curve. ’

30. Shew that the locus of poles with respect to the parabola
y3=4az of tangents to the hyperbola 23-y2=a? is the ellipse
4::2+y‘2.—.4a’. .
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. 81. Prove that the locus of the pole with respect to the hyperbola
:—:— %::1 of any tangent to the circle, whose diameter is the line
joining the foci, is the ellipae §+§=¢ﬁ,.
32. Prove that the locus of the intersection of tangents to a
hyperbola, which meet at a constant angle g, is the curve
(@ + 33+ 53— a%)3=4 oot? B (a%? - biz? + a%%).

83. From points on the circle 22+y2=a? tangents are drawn to
the hyperbola 2* — y2=a2; prove that the locus of the middle points of
the chords of contact is the curve

(=*-y*)*=a*(*+97).

84. Chords of a hyperbola are drawn, all passing through the
fixed point (h, k); prove that the locus of their middle points is a

hyperbola whose centre is the point (g g) and which is similar to
either the hyperbola or its conjugate.

312. Asymptote. Def. An asymptote is a straight
line, which meets the conic in two points both of which are
situated at an infinite distance, but which is itself not alto-
gether at infinity.

313. 7o find the asymptotes of the hyperbola
@ o,

@ B

As in Art. 260, the straight line

meets the hyperbola in points, whose abscissae are given by
the equation ’
2* (b2 — a*m?) - 2a’*mex —a? (2 + %) =0 ...... 2).
If the straight line (1) be an asymptote, both roots of (2)
must be infinite.

Hence (C. Smith’s Algebra, Art. 123), the coefficients of
2? and 2 in it must both be zero.

‘We therefore have
B —a*m?*=0, and a*mc=0.
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Hence m=-h?—l, and ¢=0.
Substituting these values in (1), we have, as the re-
quired equation,

=0,
y a

There are therefore two asymptotes both passing
through the centre and equally inclined to the axis of %
the inclination being

tan™! ll
a
The equation to the asymptotes, written as one equa-
tion, is
2 g
R
Cor. For all values of ¢ one root of equation (2) is
infinite if m==hf—l. Hence any straight line, which is
parallel to an asymptote, meets the curve in one point at
- infinity and in one finite point.

814. That the a.symptobe passes through two coincident points
at infinity, i.e. touches the curve at infinity, may be seen by finding
the equations to the tangents to the curve which pass through any

point (:c, , %“1) on the asymptote y=%x.
As in Art. 305 the equation to either tangent through this point is
y=ma+ \/am =T,
where ; z, =mx; + A/ a?m? - b2,
i.e.on clearing of surds,
m3 (z,2 - a?) —2m ‘b—z 3+ (2,2 +a?) %::
One root of this equation is m=%, so that one tangent through

the given point is y=; z, i.e. the asymptote itself.
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315. Geometrical construction for the asymptotes.

Let A’A be the transverse axis, and along the conju-
gate axis measure off CB and CB, each equal to b.
Through B and B’ draw parallels to the transverse axis
and through 4 and A’ parallels to the conjugate axis, and

let these meet respectively in X, K,, K;, and K, as in the
figure.

Clearly the equations of XK,CK; and K,CK, are
= é x, and y=— _lz
Yy=55 Yy >
and these are therefore the equations of the asymptotes.

316. Let any double ordinate PNP' of the hyperbola
be produced both ways to meet the asymptotes in @ and ¢,
and let the abscissa CV be o

Since P lies on the curve, we have, by Art. 302,
NP = b NZEr )
a
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Since @ is on the asymptote whose equation is y =;bx’
we have NQ=-

Hence PQ=NQ-NP-= s (@ — Nz =a?),
and PQ-= g (@ + Na?Zad).

Therefore PQ. P'Q = E 3 {x? = (2% - a®)} = 0%

Hence, if from any pomt on an asymptote a straight
line be drawn perpendicular to the transverse axis, the
product of the segments of this line, intercepted between
the point and the curve, is always equa.l to the square on
the semi-conjugate axis.

Again,

3
PQ b( — N2 —a? a,’)_é v
aa + Nz =P
ab
o +Nat—at
PQ is therefore always positive, and therefore the
rt of the curve, for which the coordinates are positive,
is altogether between the asymptote and the transverse
axis,

Also as ' increases, 1.e. as the point P is taken further
and further from the centre C, it is clear that PQ con-
tinually decreases; finally, when «’ is infinitely great, PQ
is infinitely small.

The curve therefore continually approaches the asymp-
tote but never actually reaches it, although, at a very great
distance, the curve would not be distinguishable from the
asymptote.

This property is sometimes taken as the definition of an
asymptote.

317. If SF be the perpendicular from § upon an
asymptote, the point ¥ lies on the auxiliary circle. This
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follows from the fact that the asymptote is a tangent,
whose point of contact happens to lie at infinity, or it may
be proved directly.

For
CA_
CF=CScos FOS=CS. o= Na'+ b Ja+b=

Also Z being the foot of the directrix, we have

CA*=08.C2, (Art. 295)
and hence CF3*=CS.CZ, 1.e. CS : CF :: CF : CZ.

By Euc. VI. 6, it follows that : CZF = » CFS = a right
angle, and hence that F lies on the directrix.

Hence the perpendiculars from the foci on either asymptote
meet it.in the same poinis as the corresponding durectrix,
and the common points of tntersection lie on the au:ct.ha/ry
circle.

318. Equilateral or Rectangular Hyperbola.
In this curve (Art. 310) the quantities a and b are equal.
The equations to the asymptotes are therefore y ==z, t.c.
they are inclined at angles % 45° to the axis of «, and hence
they are at right angles. Hence the hyperbola is generally
called a rectangular hyperbola.

319. Conjugate Hyperbola. The hyperbola which
has BB’ as its transverse axis, and 44’ as its conjugate
axis, is said to be the conjugate hyperbola of the hyperbola
whose transverse and conjugate axes are respectively A4’
and BB'.

Thus the hyperbola

=a.

is conjugate to the hyperbola

o o
) Rp— ).

Just as in Art. 313, the equation to the asymptotes of
. «
(1) 18 %: & =0,
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which, by the same article, is the equation to the asymp-
totes of (2).

Thus a hyperbola and its conjugate have the same
asymptotes.

The conjugate hyperbola is the dotted curve in the
figure of Art. 323.

320. Intersections of a hyperbola with a pair of con-
Jugate diameters.

The straight line y =m,z intersects the hyperbola

<y
@ p]
in points whose abscisse are given by
1 m
. #[3-5 =1
i 6. by th . a®b’
z.e. by the equation a*= P aim3

The points are therefore real or imaginary, according as
a'm?® is < or > B3,
.e. according as
m, is numerically < or > %
.e. according as the inclination of the straight line to the
axis of x is less or greater than the inclination of the
asymptotes.

Now, by Art. 308, the straight lines y = myx and y =m,x
are conjugate diameters if

Hence one of the quantities m, and m, must be less
than g and the other greater than %.

Let m, be <%, # that, by (1), the straight line y=mx
meets the hyperbola in real points.
L. 19
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Then, by (2), m, must be > % , 8o that, by (1), the straight
line y = m,z will meet the hyperbola in imaginary points.

It follows therefore that only one of a pair of conjugate
diameters meets a hyperbola in real points,

321. If a pair of diameters be conjugate with respect
to a kyperbola, they will be conjugate with respect to its con-
Jugate hyperbola.

For the straight lines y = m,» and y = m,x are conjugate
with respect to the hyperbola

2 v
-3 —-5;=1 ........................ (1),
if mlm,zg, ........................ (2).

Now the equation to the conjugate hyperbola only
differs from (1) in having — a? instead of a® and — * instead
of b so that the above pair of straight lines will be con-
Jjugate with respect to it, if

mlm! = :—az- =
But the relation (3) is the same as (2).
Hence the proposition.
322. If a pair of diameters be conjugate with respect

to a hyperbola, one of them meets the hyperbola in real points
and the other meets the conjugate hyperbola in real pornts.
Let the diameters be y = m,z and y = myz, so that
b?
mm, = z

As in Art. 320 let m, <%, and hence m, >%, so that the

straight line = m,x meets the hyperbola in real points.
Also the straight line y=my meets the conjugate

3
hyperbola "—;; - :; =1 in points whose absciss® are given by
. mg 1 . C at
the equation a? (7 - ;2) =1, t.e by m’:m.

Lo
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Since m, > %, these absciss® are real.

Hence the proposition.

323. If apair of conjugate diameters meet the hyperbola
and its conjugate in P and D, then (1) CP?—CD*=a’-b,
and (2) the tangents at P, D and the other ends of the
diameters passing through them form a parallelogram whose
vertices lie on the asymptotes and whose area 18 constant.

2

Let P be any point on the hyperbola :—2—%—:= 1 whose
coordinates are (a sec ¢, b tan ¢).

The equation to the diameter C'P is therefore

btan ¢ b .
= ee ¢x_a: . asm«ﬁ.

By Art. 308, the eqm;tion to the straight line, which
is conjugate to CP, is

19—2
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This straight line meets the conjugate hyperbola
y_@_,
» a
in the points (a tan ¢, b sec ¢), and (—a tan ¢, —bsec ¢) so
that D is the point (a tan ¢, b sec ¢).
‘We therefore have
CP*=a’sec® ¢ + b*tan? ¢,
and CD?*=a® tan® ¢ + b sec’ ¢.
Hence
CP*— CD*=(a*—0b%) (sec’p —tan® @) =a’ - b2
Again, the tangents at P and D to the hyperbola and
the conjugate hyperbola are easily seen to be

x Y.
E—zsm¢-=cos¢, ......... 1),
x .
and %—;sm¢=cos¢. ......... (@)
These meet at the point
z_y cos¢

a b l—sing’
This point lies on the asymptote CL.

Similarly, the intersection of the tangents at P and D’
lies on CL/, that of tangents at D’ and P’ on CL', and
those at D and P’ on CL,.

If tangents be therefore drawn at the points where a
pair of conjugate diameters meet a hyperbola and its
conjugate, they form a parallelogram whose angular points
are on the asymptotes.

Again, the perpendicular from C on the straight line (1)

cos ab cos ¢
\/1 1sm¢ TP iaEn'
ab ab

Jb’sec’dw-a tan?¢ “CDTPK’
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so that PK x perpendicular from C on PK = ab,
z.e. area of the parallelogram CPKD = ab.

Also the areas of the parallelograms CPXD, CDK,P',
CP’K'D’, and CD'K/P are all equal.

The area KK K'K, therefore = 4ab.

Cor. PK=CD=DC=K/P, so that the portion of a

tangent to a hyperbola intercepted between the asymptotes
is bisected at the point of contact.

324. Relation between the equation to the hyperbola,
the equation to its asymptotes, and the equation to the conju-
gate hyperbola.

The equations to the hyperbola, the asymptotes, and the
conjugate hyperbola are respectively

2 g

AR S T ),
= 3
AR A SR @),
and:_:_%:=—l ..................... o).

‘We notice that the equation (2) differs from equation (l})
by a constant, and that the equation (3) differs from (2) by
exactly the same quantity that (2) differs from (1).

If now we transform the equations in any way we
please—by changing the origin and directions of the axes—
by the most general substitutions of Art. 132 and by
multiplying the equations by any—the same—constant,
we ghall alter the left-hand members of (1), (2), and (3) in
exactly the same way, and the right-hand constants in the
equations will still be constants, and differ in the same way
as before. v

Hence, whatever be the form of the equation to a
hyperbola, the equation to the asymptotes only differs from
it by a constant, and the equation to the conjugate
hyperbola differs from that to the asymptotes by the same
constant.
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0< 826. As an example of the foregoing article, let it be required
to find the asymptotes of the hyperbola

822 - bzy - 2y + 62+ 11y —8=0.................. (1).

Since the equation to the asymptotes only differs from it by a
oonstant, it must be of the form

823 - bzy — 2P+ 6z +11ly+¢=0.................. (2).

8inoe (2) represents the asymptotes it must represent two straight
lines. The condition for this is (Art. 116)

8(-2)c+2.5. 320 (-H-3(%)P-(-2) (})*~c (- §=0,
s.e. e=-12,
The equation to the asymptotes is therefore
82% - bzy - 2y + 5z +11y - 12=0,
and the equation to the conjugate hyperbola is
32% - bxy - 2y + 62+ 11y - 16=0.
826. As another example we see that the equation to any
hyperbola whose asymptotes are the straight lines
Az+By+C=0 and 4,z+B,y+ C,=0,
is (Az+By+C)(4,2+By+C)=N ............... (1),
where A is any constant.
For (1) only dnﬂers by a comstant from the equation to the

asymptotes, whi
(Az+By+ C)(4dz+By+C)=0 ............... ).
If in (1) we substitute — A2 for A\* we shall have the equation to its
conjugate hyperbola.

It follows that any equation of the form
(dz+ By +C) (d,x+ By + C))=\2
represents a hyperbola whose asymptotes are
Az +By+C=0, and 4,z+By+C,=0.
Thus the equation z(z+y)=a? represents a hyperbola whose
asymptotes are z=0 and z+y=0.
Again, the equation 22+ 2zy cot 2a —y2=a?,
i.e (zcot e —y) (z tan a+y)=a?,
represents a hyperbola whose asymptotes are
zcota—-y=0, and ztana+y=0.
827. It would follow from the preceding articles that the

equation to any hyperbola whose asymptotes are =0 and y=0 is
zy=const.
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The constant could be easily determined in terms of the semi-
transverse and semi-conjugate axes.

In Art. 328 we shall obtain this equation by direct:transformation
from the equation referred to the principal axes.

EXAMPLES. XXXVII

1. Through the positive vertex of the hyperbola a tangent is
drawn; where does it meet the conjugate hyperbola?

9. Ife ande’ bethe eccentricities of a hyperbola and its conjugate,

1
prove that e—,+72=1.

8. Prove that chords of a hyperbola, which touch the conjugate
hyperbola, are bisected at the point of contact.

4, Shew that the chord, which joins the points in which a pair of
conjugate diameters meets the hyperbola and its conjugate, is parallel
to one asymptote and is bisected by the other.

5. Tangents are drawn to a hyperbola from any point on one of
the branches of the conjugate hyperbola; shew that their chord of
contact will touch the other branch of the conjugate hyperbola.

6. A straight line is drawn parallel to the conjugate axis of a
hyperbola to meet it and the conjugate hyperbola in the points P and
Q; shew that the tangents at P and Q meet on the curve

y4 y’ 3’ 4172
¥\ @) e
and that the normals meet on the axis of z.

7. From a point G on the transverse axis GL is drawn perpen-

dicular to the asymptote, and GP a normal to the curve at P. Prove
that LP is parallel to the conjugate axis,

8. Find the asymptotes of the curve 223+ 5xy +2y3+ 4z + 5y =0,
and find the general equation of all hyperbolas having the same
asymptotes.

9. Find the equation to the hyperbola, whose asymptotes are the
straight lines z+42y+3=0, and 3z+4y+5=0, and which passes
through the point (1, -1).

Write down also the equation to the conjugate hyperbola.

10. In a rectangular hyperbola, prove that CP and CD are equal,
and are inclined to the axis at angles which are complementary.
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3
11. C is the centre of the hyperbola :i: ~¥,=1 and the tangent at
any point P meets the asymptotes in the points Q and R. Prove that
the equation to the locus of the centre of the circle circumscribing
the triangle CQR is 4 (a%z®- b%y?) =(a®+ %)%

12. A series of hyperbolas is drawn having a common transverse
axis of length 2a. Prove that the locus of a point P on each hyper-
bola, such that its distance from the transverse axis is equal to its
distance from an asymptote, is the curve (z3-y?)3=4z%(z?-a?).

328. 7o find the equation to a hyperbola referred to its
asymptotes.

Let P be any point on the hyperbola, whose equation
referred to its axes is
2 ¥

e B R ().

Draw PH parallel to one asymptote CL to meet the
other CK’ in H, and let CH and HP be h and k respec-
tively. Then % and & are the coordinates of P referred to
the asymptotes.

Let a be the semi-angle between the asymptotes, so that,
by Art. 313, tan a=§,

sina cosa 1
and hence =

b a  Va+b
Draw HN perpendicular to the transverse axis, and AR
parallel to the transverse axis, to meet the ordinate PM of
the point P in R.
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Then, since PH and HR are parallel respectively to CL
and CM, we have L PHR=( LCM =a.

Hence CM =CN+ HR=CHcosa+ HPcosa
=(h+k

)ﬁ-’»

= (k- h) -

and MP=RP-HN=HPsina—CHsina

,./a w5

Therefore, since CM and MP satisfy the equation (1),
we have

(h+k? k-h} . . _a*+ b’
Frb et b e A=

Hence, since (%, k) is any point on the hyperbola, the
required equation is
ax+b3

"
This is often written in the form xy=c? where 46

equals the sum of the squares of the semiaxes of the
hyperbola.

Similarly, the equation to the conjugate hyperbola is,
when referred to the asymptotes,
a? + b?
i

329. To find the equation to the tangent at any point
of the hyperbola xy = ¢

Let (2, y) be any point P on the hyperbola, and
(=", ¥") a point @ on it, so that we have

Y =ccoiiiiiiii, 1),

and 2y =c e (2).
The equation to the line PQ is then
o yn —y o

Y-y =g (T—a) . oiinennns (3)
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But, by (1) and (2), we have

$ $
c (4
yu _ yl Z” xl c’ x — xn c’
_xl _a:"-—x'_ zrx" x"—a:'_ xlxll‘

Hence the equation (3) becomes

’

c ’
y_y.—_—z,—w,,(x'—z) ............... (4).

Let now the point @ be taken indefinitely near to P, so
that o’ =2z’ ultimately, and therefore, by Art. 149, P@Q
becomes the tangent at P.

Then (4) becomes

y-y=-S@-2) ==L @), by 1)
The required equation is therefore
oy +xy=22y =2" ............... (5)-
The equation (5) may also be written in the form
T Y _,
ZF g = 2 (6).

880. The tangent at any point of a hyperbola cuts of a triangle

of constant area from the asymptotes, and the portion of it intercepted

between the asymptotes is bisected at the point of contact.
Take the asymptotes as axes and let the equation to the hyperbola
be zy=c2
The tangent at any point P is s, + 5,:2.
This meets the axes in the points (2z’, 0) and (0, 2y').
If these points be L and L’, and the centre be C, we have
CL=27, and CL'=2y’.
If 2a be the angle between the asymptotes, the area of the triangle
a?
LCL'=}CL. CL’ gin 2a=2zy’sin 2a=

. 28in a co8 a =ab.
(Art. 328,

Also, since L is the point (22’, 0) and L’ is (0, 2y’), the middle
point of LL’ is (2, y’), i.e. the point of contact P.

a+
2

-
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331. As in Art. 274, the polar of any point (z,, ¥,)
with respect to the curve can be shewn to be

xy, +xy = 2¢°.

Since, in general, the point (z,, ¥,) does not lie on the
curve the equation to the polar cannot be put into the form
(6) of Art. 329.

332. The equation to the normal at the point (&, ')
is y—y =m(x— o), where m is chosen so that this line is
perpendicular to the tangent

A
y=—S%+_7-

If o be the angle between the asymptotes we then
obtain, by Art. 93,
o —y cosw
y —a’ cosw’
so that the required equation to the normal is
Yy (¥ — ' cos w)—z (z' — y' cos w) =y — 2",

m=

S 2
[Also COS » = COo8 2a=cos’a—sin’a=g—_—b—:|.
a®+b°

If the hyperbola be rectangular, then o =90°, and the
equation to the normal becomes xx’ —yy =2*—y*. -

333. Equation referred to the asymptotes.
One Variable.

The equation xy=c® is clearly satisfied by the substitu-
tion xz=ct and y:%.

Hence, for all values of ¢, the point whose coordinates

are (ct, ‘—;) lies on the curve, and it may be called the point

g

The tangent at the point “¢” is by Art. 329,

§+yt=2c.
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Also the normal is, by the last article,
y (1 - ¢* cos w)—z (¢ — cosw) = £ (1 - )
or, when the hyperbola is rectangular,
y—aft=2(1- ).

The equations to the tangents at the points “¢,” and « ¢,”
are

x x
t—l+yt,=2c, and t:+yt,=2c,

and hence the tangents meet at the point

(2, 22 )
L+t L+t
The line joining “¢,” and “¢,,” which is the polar of this
point, is therefore, by Art. 331,
T+ Yty =c (b +1Ly).
This form also follows by writing down the equation
to the straight line joining the points

(ct,, tgl) and (ct,, t%)

884. Bx. 1. Ifa rectangular hyperbola circumscribe a triangle,
it also passes through the orthocentre of the triangle.

Let the equation to the curve referred to its asymptotes be

TY=Clerrrniiniiniieieineererae e (1).

Let the angular points of the triangle be P, Q, and R, and let their
coordinates be

(ct,,;—), (ct,, 2), and (ct,, _c_)
. 1 ty iy
respectively.

As in the last article, the equation to QR is
T+ytts=c (tg+1y).
The equation to the straight line, through P perpendicular to QR,
is therefore

y_t£=t2t![x—Ct]]1
1

i.e. Y +ctytatg=tyts [z + E‘E:t_a] ..................... (2).
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Slmxhrly, the equation to the straight line through Q perpendicular
to RPis

yentty=tin [+ :,] ..................... @)
The common point of (2) and (3) is clearly .
¢
(— e ct,t,t,) ........................... (4),

and this is therefore the orthocentre.
But the coordinates (4) satisfy (1). Hence the proposition.
Also if (ct‘, ) be the orthocentre of the points *¢,,” “t,,” and
“1y,” we have t)tytyt = — 1.
Bx. 3. If a circle and the rectangular hyperbola xy=c? meet in
the four points “t,,” “t,,” “t3,” and “t,,” prove that
(l) tl%tl"lx

(2) the centre of mean position of the four points bisects the
distance between the centres of the two curves,

and (3) the centre of the circle through the points “t,,” “t,,” “t,” is

(3 1) c(l 1 1 )}
sttt ), glo+r++htts )t -
fi(ararargg) 5(G+5+5 o
Let the equation to the circle be
z3+y2 - 29z - 2fy + k=0,
so that its centre is the point (g, f).

Any point on the hyperbola is (ct, tf) . If this lie on the cirdle,

]
we have c’t’+:—,—2gct—2f%+k=0,
o9 R ¥
so that t 2Et’+c,t ;H-l-o ..................... 1.
If t,, t,, t5, and t, be the roots of this equation, we have, by Art. 2,
Glatsta=L..oooiiiiiriereeeeieenn ),
2,
Bttty = s s @),
; 2
and t,t,t.+t,t.t,+t.t,t,+tlt,t,={ ................... (4).
Dividing (4) by (2), we have

1,11 1 3
i;+t_, G T 6)-
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The centre of the mean position of the four points,

i.c.thepoint{ (+t+ttidg ( +:,+:,+:1.)}

is therefore the point %,g , and tlns is the middle point of the line
joining (0, 0) and (g, /).

Also, since Q:L , we have
3

LUy
(t1+‘,+t,+t—g) and f"—(— t’ ‘,+tl‘2tl)
Again, since t,t,tt,=1, we have product of the abscissae of the
four points=product of their ordinates=c*.

EXAMPLES. XXXVIIL

2
1. Prove that the foci of the hyperbola xy:a'—::—b’ are given by
a?+b?
%
2. Shew that two concentric rectangular hyperbolas, whose axes
meet at an angle of 45°, cut orthogonally.

A siraight line always passes through a fixed point; prove
thst “the locus of the middle point of the portion of it, which is
intercepted between two given straight lines, is a hyperbola whose
asymptotes are parallel to the given lines.

4. If the ordinate NP at any point P of an ellipse be produced to
Q, so that NQ is equal to the subtangent at P, prove that the locus of
Q is a hyperbola.

5. From a point P perpendiculars PM and PN are drawn to two
straight lines OM and ON. If the area OMPN be constant, prove
that the locus of P is a hyperbola.

6. A variable line has its ends on two lines given in position and
passes through a given point; prove that the locus of a point which
divides it in any given ratio is a hyperbola.

7. The coordinates of & point are a tan (0+a) and btan (6+8),
where 0 is variable; prove that the locus of the point is a hyperbola.

8. A series of circles touch a given straight line at a given point.
Prove that the locus of the pole of a given straight line with regard to
these circles is a hyperbogo whose asymptotes are respectively a
pmllgl to the first given straight line and a perpendicular to the
second.

T=y= %=
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9. If a right-angled triangle be inscribed in a rectangular hyper-
bola, prove that the tangent at the right angle is the perpendicular
upon the hypothenuse.

10. In a rectangular hyperbola, prove that all straight lines, which
subtend a right angle at a point P on the curve, are parallel to the
normal at P.

11. Chords of a rectangular hyperbola are at right angles, and
they subtend a right angle at a fixed point O; prove that they inter-
sect on the polar of 0.

12. Prove that any chord of a rectangular hyperbola subtends
angles which are equal or supplementary (1) at the ends of a perpen-
dicular chord, and (2) at the ends of any diameter.

13. In a rectangular hyperbola, shew that the angle between a
chord PQ and the tangent at P is equal to the angle which PQ
subtends at the other end of the diameter through P.

14. Show that the normal to the rectangular hyperbola zy=c* at
the point “¢” meets the curve again at a point ¢ ¢'”’ such that
8= -1.

15. If P,, P,, and P be three points on the rectangular hyperbola
zy =c?, whose absciss® are z,, z;, and z3, prove that the area of the
triangle P,P,P, is

c_’ (23— 23) (23— T)) (21— )
2 2,24 ’
and that the tangents at these points form a triangle whose area is
o (Ta—Tg) (T3— 7)) (2, - 7,) .
(%3t T3) (73 + 7)) (21 +2,)
16. Find the coordinates of the points of contact of common
tangents to the two hyperbolas
z3-y3=3a? and zy=2a2%
17. The transverse axis of a rectangular hyperbola is 2¢ and the

asymptotes are the axes of coordinates; shew that the equation of the
chord which is bisected at the point (2¢, 3¢) is 8z 42y =12¢.

18. Prove that the portions of any line which are intercepted
between the asymptotes and the curve are equal.

19. Shew that the straight lines drawn from a variable point on
the curve to any two fixed points on it intercept a constant distance on
either asymptote.

20. Shew that the equation to the director circle of the conic
zy=c?is 224 2ry 008 w+ y2=4c? cos w.

21. Prove that the asymptotes of the hyperbola zy=hz + ky are
z=kand y=h.
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92. Shew that the straight line y=mz + 3¢,/ — m always touches the
c
hyperbola zy=c?, and that its point of contact is (J:}T.’ o/ —m,).

23. Prove that the locus of the foot of the perpendicular let fall
from the centre upon chords of the rectangular hyperbola zy=c2
which subtend half a right angle at the origin is the. curve

. 74— 2¢%3 gin 20=c*4. ‘

24. A tangent to the parabola z%=4ay meets the hyperbola zy = k3
in two points P and Q. Prove that the middle point of PQ lies on a
parabola.

25. If a hyperbola be rectangular, and its equation be zy=c2,
prove that the locus of the middle points of chords of constant length
2dis (=?+97%) (zy - ) =d’zy.

926. Shew that the pole of any tangent to the rectangular hyper-
bola zy =c?, with respect to the circle z%+y2?=a?, lies on a concentric

.and similarly placed rectangular hyperbola.

97, Prove that the locus of the poles of all normal chords of the

rectangular hyperbola zy =¢? is the curve
(22 - y?)* + 4c?7y =0.

28. A’ny t;mgent to the rectangular hyperbola 4zy=ab meets the
ellipse ;, + %,:1 in the pointe P and @; prove that the normals at P
and Q to the ellipse meet on a fixed diameter of the ellipse.

29. Prove that triangles can be inscribed in the hyperbola zy=c?,
whose sides touch the parabola y?=4az.

80. A point moves on the given straight line y=mz; prove that
the locus of the foot of the perpendicular let fa‘lgl from the centre upon
its polar with respect to the ellipse %:rg,-:l is a rectangular
hyperbola, one of whose asymptotes is the diameter of the ellipse
which is conjugate to the given straight line.

31. A quadrilateral circumscribes a hyperbola; prove that the
straight line joining the middle points of its diagonals passes through
the centre of the curve.

392. 4, B, C, and D are the points of intersection of a circle and a
rectangular hyperbola. If 4B pass through the centre of the hyper-
bola, prove that CD passes through the centre of the circle.

83. If a circle and a rectangular hyperbola meet in four points P,
Q, R, and 8, shew that the orthocentres of the friangles QRS, RSP,
SPQ, and PQR also lie on a circle.

Prove also that the tangents to the hyperbola at R and S meet
in a point which lies on the diameter of the hyperbola which is at
right angles to PQ.
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34. A series of hyperbolas is drawn, having for asymptotes the
principal axes of an ellipse; shew that the common chords of the
hyperbolas and the ellipse are all parallel to one of the conjugate
diameters of the ellipse.

35. A circle, passing through the centre of a rectangular hyperbola,
outs the curve in the points 4, B, C, and D ; prove that the circum-
circle of the triangle formed by the tangents at 4, B, and C goes
through the centre of the hyperbola, and has its centre at the point
of the hyperbola which is diametrically opposite to D.

36. Given five points on a circle of radius a; prove that the
centres of the rectangular hyperbolas, each passing through four of
a

2

87. If a rectangular hyperbola circumsecribe a triangle, shew that
it meets the circle circumseribing the triangle in a fourth point, which
is at the other end of the diameter of the hyperbola which passes
through the orthocentre of the triangle.

Hence prove that the locus of the centre of a rectangular hyper-
bola which circumscribes a triangle is the nine-point circle of the
triangle.

38. Two rectangular hyperbolas are such that the asymptotes of
one are parallel to the axes of the other and the centre of each lies on
the other. If any circle through the centre of one cut the other again
in the points P, Q, and R, prove that PQR is a triangle such that each
side is the polar of the opposite vertex with respect to the first
hyperbola.

these points, all lie on a circle of radius



CHAPTER XIV.

POLAR EQUATION OF A CONIC SECTION, ITS FOCUS
BEING THE POLE,

3835. Let S be the focus, 4 the vertex, and ZM the
directrix ; draw SZ perpendicular to ZM.

Let Z§ be chosen as the positive direction of the
initial line, and produce it to X.

Take any point P on the
curve, and let its polar co-
ordinates be r and 6, so that
we have

SP=y, and « XSP=6.

Draw PN perpendicular
to the initial line, and PM
perpendicular to the directrix.

Let SL be the semi-latus-
rectum, and let SL=1.

Since SL=e.SZ, we have

sz=2.
é

N

Hence
r=SP=e¢.PM=¢.ZN
=e(ZS+8N)

=a(§+SP.coso)=l+e.r.eos0.

Therefore L gerv-vy TR UREREIERE (1)

-,
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This, being the relation holding between the polar
coordinates of any point on the curve, is, by Art. 42, the
required polar equation.

Cor. It SZ betaken as the positive direction of the initial line and
the vectorial angle measured clockwise, the equation to the curve is

l
“1tecosd’
886. If the conic be a parabola, we have e_l and the equation
< l
18 1‘=—--— __—__oogeoﬂ

1-cosé 2sm’g 2

If the initial line, instead of being the axis, be such that the axis
is inclined at an angle v to it, then, in the previous article, instead of
0 we must substitute 6 — .

The equation in this case is then

é:l-eeos(ﬂ—'y)./
88%7. To trace the curve %:- 1—ecosé.

Case I. e=1, so that the equation is ;{: 1-cosé.

‘When 0 is zero, we have ;: 0, so that » is infinite. As
0 increases from 0° to 90°, cos@ decreases from 1 to 0,
and hence ; increases from 0 to 1, <e. » decreases from
infinity to /.

As 0 increases from 90° to 180°, cos@ decreases from
0 to — 1, and hence é increases from 1 to 2, .. » decreases
from / to 3.

Similarly, as 6 changes from 180° to 270°, r increases

from % to [, and, as 6 changes from 270° to 360°, » increases
from I to 0.

The curve is thus the parabola ooI"PLAL'P’F’ao of
Art. 197.

20—2
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Case II. e<1. When 0 is zero, we have ,i_.—.l—e,

te r= t . This gives the point A’ in the figure of Art.

1-e
247.
As 0 increases from 0° to 90°, cos § decreases from 1 to

0, and therefore 1 —ecos @ increases from 1-e¢ to 1, i.e. ;l_

increases from 1—e¢ to 1, t.e. » decreases from o to I

1-e

‘We thus obtain the portion 4'PBL.

As 0 increases from 90° to 180° cos @ decreases from 0
to — 1, and therefore 1 —ecos @ increases from 1 to 1 +e¢,

t.e. ¢ increases from 1 to 1 + ¢, %.e. » decreases from 7 to —L .
”r . 1+e
We thus obtain the portion L4 of the curve, where

l
54~ l+e’
Similarly, as 6 increases from 180° to 270° and then to
360°, we have the portions AL’ and L'B' P4’
Since cos 8 = cos (— 0) = cos (360° — ), the curve is sym-

metrical about the line S4'. i
CaseIII. e>1. When 6 is zero, 1 —ecos is equal

to 1-¢, i.e. —(¢—1), and is therefore a negative quantity,

since ¢> 1. This zero value of § gives r =—1+ (e —1).

‘We thus have the point 4’ in the figure of Art. 295.

Let 0 increase from 0° to cos“_(-:;). Thus 1—ecosd
increases algebraically from — (e—1) to -0,

1.e. -f—_ increases algebraically from —(e—1) to —d,

t.e. r decreases algebraically from — % to—o.

For these values of @ the radius vector is therefore

negative and increases in numerical length from e—-—l—l tow.

y
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We thus have the portion 4'P/R’ o of the curve. For
this portion » is negative.

If 0 be very slightly greater than eos"l, then cos @ is

slightly less than — L ;% that 1 — e cos @ is small and positive,
and therefore  is very great and is positive, Hence, as 0
increases through the angle cos™ ; , the value of r changes
from —w to + .

As 0 increases from eoas‘ll to m, 1 —ecosf increases
from O to 1+e¢ and hence r decreases from o to %&
Now i+e is < él—l . Hence the point 4, which corresponds
to 0=, is such that S4 <S4’ i

For values of 6 between cos“% and 7 we therefore

have the portion, o RPA, of the curve. For this portion
r is positive.

As 6 increases from = to 21r—cos";—, ecos @ increases
from —e to 1, so that 1 —ecos@ decreases from 1 +¢ to 0,
and therefore r increases from 1{: to . Corresponding

to these values of § we have the portion AL'R, « of the
curve, for which 7 is positive.

Finally, as 6 increases from 21r—cos"-:— to 2m, ecosf
increases from 1 to e, so that 1 — e cos @ decreases algebraic-
ally from 0 to 1—e, t.e. é is negative and increases
numerically from 0 to ¢ —1, and therefore  is negative and
decreases from oo to Ei_" Corresponding to these values

1

of § we have the portion, «o B,'4’, of the curve. For this
portion 7 is negative.
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r is therefore always positive for the right-hand branch
of the curve and negative for the left-hand branch.

It will be noted that the curve is described in the order
A'P/R w0 o RPAL'R, o » R/A'.

888. In Case IIL of the last article, let any straight line be
drawn through S to meet the nearer branch in p, and the further
branch in q.

The veoctorial angle of p is XSp, and we have

l
Sp=1= eo0o8 XSp”©
The vectorial angle of ¢ is not XSg but the angle that ¢S produced

makes with SX, i.e. it is XSg+¥. Also for the point g the radius
vector is negnhve 80 that the relation (1) of Art. 335 gives, for the

point g,
Soe l B i
9= ] ¢oos(XSq+¥) 1+eccosXS¢’
1

i.e. Sg=- m .

This is the relation connecting the distance, Sg, of any point on
the further bmnch of the hyperbola with the angle XSq that it makes
with the initial lin

839. ZEgquation to the directrices.
Considering the figure of Art. 295, the numerical values
of the distances §Z and SZ’ are é and %+ 202,

. l 1
6. s and ; +2 s@<1)’
. a1
since CZ_;_e(e’—l)' [Art. 300.]
The equations to the two directrices are therefore
rcosf=— f,
: e
4 e’+l

and roos0=—[— Py l)] Pt

The same equations would be found to hold in the case
of the ellipse.
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340. ZEguation to the asymptotes.

The perpendicular distance from § upon an asymptote
(Fig., Art. 315)
' b

= C§sin ACK =ae.
Ja+b

Also the asymptote CQ makes an angle cos“% with the

axis. The perpendicular on it from § therefore makes an
angle 7-2r + cos™? 3

Hence, by Art. 88, the polar equation to the asymptote
CQ is

b= roos[o——-—oos“] rsm[0 cos"]

The polar equation to the other asymptote is similarly

b=rcos [0—(%—’r —cos ! ‘1—,)] =—rsin (0+cos“'-:—).

841. BEx. 1. In any conic, prove that

(1) the sum of the reciprocals of the segments of any focal chord
is constant, and

(2) the sum of the reciprocals of two perpendicular focal chords is
constant.

Let PSP’ be any focal chord, and let the vectorial angle of P be a,
so that the vectorial angle of P’ is x +a.

(1) By equation (1) of Art. 335, we hava

! =1-ecosa,
SP~ ?
1.
and SP:I—eeos(x+¢)=l+¢008¢.
Hence —l—-+—l—-=2
SP " SP
1 1 2
8o that SPYEP=T

The semi-latus-rectum is therefore the harmonic mean between
the segments of any focal chord.
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(2) Let QSQ’ be the focal chord perpendicular to PSP, so that the
vectorial angles of Q and Q' are g+¢ and zi;—'+«.. ‘We then have

SQ_I e cos (2+a)=l+csma.,

3r
and SQ'—I ecos(2+¢) 1+eoos( +a)=1-esina.

Hence
1 l 2!
PP‘SP+SP=1—ecoé¢ *itecosa i-elcosia’
l l p1A

and QY =8Q+5Q =

itesina " I-esina  l1-elsinta’

Therefore
_1“‘_}___1__l—e’cos’m._,_1—¢’sin"a,_27--g_2
PP QT 2 AT

‘and is therefore the same for all such pairs of chords.

Bx. 3. Prove that the locus of the middle points of focal chords of
a conic section is a conic section.

Let PSQ be any chord, the angle PSX being 4, so that
l
Sp= 1-ecosd’
l
SQ=y —ecos(x+08) l+ecosd’
Let R be the middle point of PQ, and let its polar coordinates be

and

r and 6.
Then r=sz>_1zp=sp-§fi—259=sp2‘s°
—il[ _ ]_ ecosd
T 1-¢cosd 1l4ecosf| 1-ec?cos?o’
t.e 12— e?3cos20=1le.rcosd.
Transforming to Cartesian coordinates this equation becomes
B+y2-B3=1lex ..c.cvuuerrinrinianeennnnn, (1).

If the original conic be a parabola, we have e=1, and equation (1)
becomes y%=lz, so that the locus is a parabola whose vertex is S and
latus-rectum I.

If e be not equal to unity, equation (1) may be written in the form

le P, , B
(- e-4 5] =g ey
and therefore represents an ellipse or a hyperbola according as the
original conic is an ellipse or a hyperbola.
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342. To find the polar equation of the tangent at any
point P of the conic section o 1—ecosf.

Let P be the point (7, a), and let @ be another point
on the curve, whose coordinates are (r,, B), so that we have

and ;:l—ecosB ..................... (2).

2

By Art. 89, the polar equation of the line PQ is
sin(B—a) sin(f-a) + sin (8 -6)
r T, )

Ty 1

By means of equations (1) and (2) this equation becomes
ésin(B—a)=sin(0—a){1 —ecos B} + sin (8- 0) {1 —ecosa}

={sin( —a) + sin (8—-06)} —e {sin (6 —a) cos B + sin(B—0)cosa}
B-a 20—a-f

=2sin D) oS —- 5

—e{(sinf cosa — cos fsina)cos B + (sin Bcos §—cos Bsinb) cosa}
B-a

9

&

=2sin

cos (0—% —ecos fsin (B8 - a),

. l B—a a+
.e. 5 =sec—5— cos <0 - -) —ecosf......... (3).

This is the equation to the straight line joining two
points, P and @, on the curve whose vectorial angles, a and
B, are given.

To obtain the equation of the tangent at P we take @
indefinitely close to P, i.e. we put B=a, and the equation
(3) then becomes

This is the required equation to the tangent at the
point a.
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848. If we assume a suitable form for the equation to the
joining chord we can more easily obtain the required equation.

Let the required equation be
L Loos(9-7)-€0080 ..ooccorrrr @.

[On transformation to Cartesian ocoordinates this equation is
easily seen to represent a straight line; also since it contains two
arbitrary oonstants, L and v, it can be made to pass through any two
pointa.]

If it pass through the point (r;, a), we have

l—eoo3a.=r£=Looa(¢--y)—eoos«,
1

t.c. Loos(a—y)=L...cccocrrrriviiininirnnnnnnns (2)-
Similarly, if it pass through the point (r;, 8) on the curve, we have
Loos(B=v)=l.cceriiiririiriiiricnnennne (3).
Solving these, we have, [since a and S are not equal]
. +
a-y=-(B~-7) i 1=¢2—E-
Substituting this valae in (3), we obtain L=seo9-;~ﬁ.

The equation (l) is then
;—seo— -ﬂ (0———'&—3)—00050.

As in the last article, the equation to the tangent at the point a is
then

L (0-a)—-ecosb.
T

*344. To find the polar equation of the polar of any
point (ry, 6,) with respect to the conic section ;=1—eco30.

Let the tangents at the points whose vectorial angles
are a and B meet in the point (ry, 6,).

The coordinates =, and 6, must therefore satisfy equation
(4) of Art. 342, so that

Tl=oos(0,—a)—ccos0, ................ (1).
Similarly,
%:oos(ﬂ,—ﬁ)—ecosol. .............. @).



POLAR EQUATION TO THE POLAR. 315

Subtracting (2) from (1), we have
cos (6, — a)=cos (6, - B),

and therefore
6,—a=—(6,—B), [since a and B are not equal],
.6 g B

g =0 e 3).
Substituting this va.lue in (1), we have
l a+f3
1—'1—005 {—2—‘— }—Gcosol,
i.e oosﬁ;m=£l+ecos01 ................ (4).

Also, by equation (3) of Art. 342, the equation of the
line joining the points a and B is

£+ecos€=secp_~acos(0—a+ﬂ ,
¢~ cos (0—a+ﬂ

t.e. (E +ecos 0) (—- +ecos 0,) =cos(0-6,)...... (5).

This therefore is the required polar equation to the polar
of the point (ry, 6,).

€. (l+ec080) cos

%*348. To find the equation to the normal at the point
whose vectorial angle 13 a.

The equation to the tangent at the point a is
- =cos (0 —a)—ecos b,

t.¢., in Cartesian coordinates,
xz(cosa—e)+ysina=0l................ (1).
Let the equation to the normal be

Acos0+Bsin0=; .................. 2),
e Az + By=1......ccccovunenene. (3).
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Since (1) and (3) are perpendicular, we have
A(cosa—e)+ Bsina=0.............. (4).

. . !
Since (2) goes through the point (m , & ) we have

A cosa+Bsina=1-ecosa............ (5).
Solving (4) and (5), we have
A=l—oc05a., and B___(l—ecosa:)(e—cosa).
esina
The equation (2) then becomes
. . lesin a
smac030+(e—eosa)sm0—r———(l_ecos-u),
esine

.. sin(9—u)—esin0=—m.;.

3846. If the axis of the conic be inclined at an angle y to the
initial line, so that the equation to the conic is
l
;_l—eoos(O—-y),

the equation to the tangent at the point a is obtained by substituting
a—+ and @ -y for a and 8 in the equation of Art. 342.

The tangent is therefore
é:cos(&—a)—eoos @--
The equation of the line joining the two points « and 8 is, by the
same article,

LN il _etB)_ -

S =8e0—- co8 (0 3 ) ecos (0 -7).
The equation to the polar of the point (r,, 6,) is, by Art. 344,

{;+eoos (0—7)} {;l+e cos (01—7)} =cos (6 - 6,).
1

Also the equation to the normal at the point a '

. . __ elsin(a~9)
r{esin (0 - v) +sin (a - l?)}—l——————__wOs ="
847. Bx. 1. If the tangents at any two points P and Q of a
conic meet in a point T, and if the straight line PQ meet the directriz
sorresponding to S in a point K, then the angle KST is a right angle.
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If the vectorial angles of P and Q be a and B respectively, the
equation to PQ is, by equation (3) of Art. 842,

r 2
Algo the equation to the directrix is, by Art. 839,

l:secg—_—“oos((i—# ~ecosf............... (1).

If we solve the equations (1) and (2), we shall obtain the polar
coordinates of K.

But, by subtracting (2) from (1), we have

- _at+p . _atf =
0=sec - cos (@ -5 ) i.e. 0 9 =3
. +
ie LKSX=T + “—2£ ,

so that SK bisects the exterior angle between SP and SQ.
Also, by equation (3) of Art. 844, we have the vectorial angle of T

equal to *18, e, /75X~ S48,

Hence LKST= Lt KSX - zz'sx:%.

- Bx. 3. &8 1isthe focus and P and Q two points on a conic such that
the angle PSQ is constant and equal to 25 ; prove that

(1) the locus of the intersection of tangents at P and Q is a conic
section whose focus is S, :

and (2) the line PQ always touches a conic whose focus is S.

(1) Let the vectorial angles of P and Q be respectively v+ and
-+ — 8, where v is variable.

By equation (4) of Art. 342, the tangents at P and Q are therefore

T
!
r

and =008 (0 -y+08)—€0088 ....c.oeveenrrnnnnnd (2).

If, between these two equations, we eliminate the variable quantity
v, we shall have the locus of the point of intersection of the two
tangents.

Subtracting (2) from (1), we have
©08 (6 ~y — 3)=cos (0 —y+3).
Henoe, (sinoe & is not zero) we have y=46.
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Sabstituting for  in (1), we have
£=eo-8—¢eo-l.
r
ie. !—?-‘=l—zmlea0.
Hence the required locus is a eonic whose focus is S, whoee latus
rectum is 2! sec 3, and whose eccentricity is e sec 3.
It is therefore an ellipse, parabols, or hyperbola, according as
esecd is <=>1, i.c. acoording as cos §> = <e.
(2) The equation o PQ is, by equation (3) of Art. 342,

;=secaoos(0—-y)—¢eou0.

ie. '%'3=eos(a-1)-eeo-aeou .................. 3).
Comparing this with equation (4) of Art. 342, we see that it always
touches a conic whose latus rectum is 2! cos 3 and whose eccentricity
is eocosd.
Also the directrix is in each case the same as that of the original

conie. mefﬁ—’m‘”"’mqmwg.

esecd ecosd

Bx. 8. A circle passes through the focus S of a conic and meets it
in four points whose distances from S are ry, 15,75, and r,. Prove that

1) f,r,r,r4=£;, where 2l and e are the latus rectum and

eccentricity of the conic, and d is the diameter of the circle,
wma @ 2elil, 18
r, o1y T3 1y 1
Take the focus as pole, and the axis of the conic as initial line, so
that its equation is
l—l—c '}
= COBO....covnninnininnnnins (1)

If the diameter of the circle, which passes through S, be inclined
at an angle 4 to the axis, its equation is, by Art. 172,
r=d008(0—7)..ccceuuertrcrirrnranennnnnn, (2).

If, between (1) and (2), we eliminate 6, we shall have an equation
in r, whose roots are r,, r,, 75, and r,.

From (1) we have oos0=’-’;_r—l, and hence sin 6=, /1- (':;l)’,

and then (2) gives
r=dcosycosd+dseinysing,
{.e. {er*~doosy (r - ) }3=d?sind~ [e¥3 - (r- )],
f.e. it —2edcosy .73+ 7% (d®+2¢ld 008y — e3d*sind y) — 2ld%r + AP =0.
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Hence, by Art. 2, we have

ap
TITSTSTA= g cooeroesennnses s (8),
2ld*
and Trs o+ T+ I T+ T =— coeeevnnnnenne (8).

8’
Dividing (4) by (3), we have

EXAMPLES. XXXIX.

1. In a parabola, prove that the length of a focal chord which is
inclined at 80° to the axis is four times the length of the latus-rectum.

The tangents at two points, P and Q, of a conic meet in T, and S
is the focus; prove that

2. if the conic be a parabola, then ST3=SP, Q.
8. if the conic be central, then 1.1 gin? PsQ
- ! ) SP.8Q STPTR 7’
where b.is the semi-minor axis.

4. The vectorial angle of T is the semi-sum of the vectorial
angles of P and Q.

Hence, by reference to Art. 338, prove that, if P and Q be on
different branches of & hyperbola, then ST bisects the supplement of

the angle PSQ, and that in other cases, whatever be the conic, ST
bisects the angle PSQ.

5. A straight line drawn through the common focus S of a
number of conics meets them in the points P,, P,, ...; on it is taken
& point Q such that the reciprocal of SQ is equaf the sum of the
reciprocals of SP,, SP,,.... Prove that the locus of Q is a conic
sectiorr whose focus is S, and shew that the reciprocal of its latus-
rectum is equal to the sum of the reciprocals of the latera recta of the
given conics,

6. Prove that perpendicular focal chords of a rectangular hyper-
bola are equal.

7. PSP and QSQ’ are two perpendicular focal chords of a conic;
prove that is constant.

1
PS.sP T 05.5¢

8. Bhew that the length of any focal chord of a conic is a third
pll;oggrtional to the transverse axis and the diameter parallel to the
chord.

9. If a straight line drawn through the focus S of a hyperbola,
parallel {o an asymptote, meet the curve in P, prove that SP is one
quarter of the latus rectum.
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10. Prove that the equations é:l—eooso and %:—eooso—l
represent the same conic.

11. Two conics have a common focus; prove that two of their
common chords pass through the intersection of their directrices.

12. P is any point on a conic, whose focus is S, and a straight
line is drawn through S at a given angle with SP to meet the tangent
at P in T; prove that the locus of T is a conic whose focus and
directrix are the same as those of the original conic.

18. If a chord of a conic section subtend a constant angle 2a at the
focus, prove that the locus of the point where it meets the internal

bisector of the angle 2« is the conie section

lcos"':l—eoosa.eoso.

14. Two oonio sections have a common focus about which one of
them is turned; prove that the common chord is always a tangent to
another conic, having the same focus, and whose eccentricity is the
ratio of the ecoentricities of the given conics.

15. Two ellipses have a common focus ; two radii vectores, one to
each ellipse, are drawn from the focus at right angles to one another
and tangents are drawn at their extremities; prove that these tangents
meet on a fixed conic, and find when it is a parabola.

16. Prove that the sum of the distances from the focus of the
points in which a conioc is intersected by any circle, whose centre is at
a fixed point on the transverse axis, is constant.

17. Shew that the equation to the circle circumsecribing the triangle

formed by the three tangents to the parabola T={"ond drawn at
the points whose vectorial angles are a, 8, and v, is .
- 2 cosec B coseo Y sin ((2FEHY _
r_aooseegcoseczoosec2mn( 5 0),

and hence that it always passes through the focus.

18. If tangents be drawn to the same parabola at points whose
vectorial angles are a, B, v, and 3, shew that the centres of the circles
circumseribing the four triangles formed by these four lines all lie on
the circle whose equation is
- @ cosec B cosee Y cosec _atBty+?
r= —acosec 5 cosec Y cosec 3 cosec 3 cos [0 B} 6] .

19. The circle circumseribing the triangle formed by three tangents
to a parabola is drawn; prove that the tangent to it at the focus
makes with the axis an angle equal to the sum of the angles made
with the axis by the three tangents.
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90. Shew that the equation to the circle, which passes through
the focus and touches the curve ;_ =1-eco8 0 at the point §=a, is

r(1-ecosa)’=1Icos (0 — a) — el cos (0 - 2a).

21. A given circle, whose centre is on the axis of a parabola,
passes through the focus S and is cut in four points 4, B, C, and D by
any conie, of given latus-rectum, having S as focus and a tangent to
the parabola for directrix; prove that the sum of the distances of the
points 4, B, C, and D from S is constant.

292. Prove that the locus of the vertices of all parabolas that can be
drawn touching a given circle of radius a and having a fixed point on

the circumference as focus is r=2acos3g, the fixed point being the
pole and the diameter through it the initial line.

23. Two conic sections have the same focus and directrix. Shew
that any tangent from the outer curve to the inner one subtends a
‘constant angle at the focus.

24, Two equal ellipses, of eccentricity e, are placed with their
axes at right angles and they have one focus S in common ; if PQ be

a common tangent, shew that the angle PSQ is equal to 2sin-1! »\% .
25. Prove that the two conics h 1-¢,co86 and lﬁ,: 1-e,c08(0-a)
T T :
will touch one another, if
L2 (1 - eg?) + 1% (1 - ¢,%) + 21, l,e,5 cOB a=0.

26. An ellipse and a hyperbola have the same focus S and
intersect in four real points, two on each branch of the hyperbola ; if
7, and r, be the distances from S of the two points of intersection on
the nearer branch, and r, and r; be those of the two points on the
further branch, and if ! and !’ be the semi-latera-recta of the two
conics, prove that

A1, 1 A1 1\
(””(Fl*r;)*("”(r;*rj)-""
[Make use of Art. 338.]

927. If the normals at three points of the parabola r=a cosecﬁg,
whose vectorial angles are a, 8, and v, meet in a point whose vectorial
angle is 3, prove that 26=a+g+y - .



CHAPTER XV.

GENERAL EQUATION OF THE SECOND DEGREE.
TRACING OF CURVES.

348. Particular cases of Conic Sections. The
general definition of a Conic Section in Art. 196 was that
it is the locus of a point P which moves so that its distance
from a given point § is in a constant ratio to its perpen-
dicular distance PM from a given straight line ZK.

‘When S does not lie on the straight line ZK, we have
found that the locus is an ellipse, a parabola, or a hyperbola
according as the eccentricity e is <= or > 1.

The Circle is a sub-case of the Ellipse. For the
equation of Art. 139 is the same as the equation (6) of
Art. 247 when b°=a? ¢e. when ¢=0. In this case

CS=0, and SZ=g—ae=oo. The Circle is therefore a

Conic Section, whose eccentricity is zero, and whose direc-
trix is at an infinite distance.

Next, let S lie on the straight line ZX, so that S and Z
coincide.

In this case, since

SP=e¢.PM,
we have
. PM 1
smPSM:S—P ==

If ¢>1, then P lies on one or
other of the two straight lines SU
and SU’ inclined to KK’ at an angle

sin-" (%) :
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If e=1, then PSM is a right angle, and the locus
becomes two coincident straight lines coinciding with SX.

If e<1, the - PSM is imaginary, and the locus consists
of two imaginary straight lines.

1f, again, both KK’ and S be at infinity and S be on
KK', the lines SU and SU’ of the previous figure will be
two straight lines meeting at infinity, i.e. will be two
parallel straight lines.

Finally, it may happen that the axes of an ellipse may
both be zero, so that it reduces to a point.

Under the head of a conic section we must therefore
include :

(1) An Ellipse (including a circle and a point).
(2) A Parabola.
(3) A Hyperbola.

(4) Two straight lines, real or imaginary, inter-
secting, coincident, or parallel.

349. To shew that the general equation of the second
degree
ax® + 2hay + by* + 292+ 2fy + ¢=0......... (1)

always represents a conic section.
Let the axes of coordinates be turned through an angle
0, so that, as in Art. 129, we substitute for  and y the
quantities x cos @ —ysinf and «sin 6+ycosf respec-
tively.
The equation (1) then becomes
a (x cos 0 — y sin 6)* + 2k (x cos 6 — y sin 6) (x sin 0 + y cos )
+ b (z 8in 6 + y cos 6)* + 29 (x cos 6 — y sin )
+ 2f (xsin 6 +y cos 0) +¢ =0,
t.e. 2* (a cos? 0 + 2k cos 0 sin 0 + b sin? §)
+ 2xy {h (cos? O — sin? #) — (a — b) cos 0 sin 6}
+ ? (@ sin? 0 — 2A cos 0 sin 0 + b cos? 0) + 2z (g cos 6 + fsin 6)
+2y(fcosf—gsinh)+c=0............ (2).
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Now choose the angle 6 so that the coefficient of xy in
this equation may vanish,
t.6. 80 that /4 (cos?§ —sin?*6) = (a—b) sin 6 cos 6,
i.e 2h cos 20 = (a — b) sin 20,
t.e. 8o that tan20=£"— .
a-b

‘Whatever be the values of a, b, and A, there is always
a value of 6 satisfying this equation and such that it lies
between —45° and +45°. The values of sin § and cos 6 are
therefore known.

On substituting their values in (2), let it become
A+ By + 2GQx + 2Fy +¢=0............ 3).
First, let neither 4 nor B be zero.
The equation (3) may then be written in the form
G 2 2 Gﬁ Fﬁ
A m+z) +B<y+ B) =T tE "
Transform the origin to the point <_ g, —g).
The equation becomes

, G I
Ax’+]i’y‘=j+§—c=1((say) ......... 4),
e z* Z =l (5).
4 B
K K - .
If 1 and 3 be both positive, the equation represents an
ellipse. (Art. 247.)

If ;—' and % be one positive and the other negative, it
represents a hyperbola (Art. 295). If they be both
negative, the locus is an imaginary ellipse.

If K be zero, then (4) represents two straight lines,
which are real or imaginary according as 4 and B have
opposite or the same signs.
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Secondly, let either 4 or B be zero, and let it be 4.
Then (3) can be written in the form

F\2 c .
Transform the origin to the point whose coordinates

are
c F? F)
(‘2‘@*279' ~B)

This equation then becomes

By*+2Gx =0,
al
i.e. y’:—%’x,

which represents a parabola. (Art. 197.)

If, in addition to 4 being zero, we also have G zero, the
equation (3) becomes
By +2Fy +c¢=0,

. ‘ F_* [F? ¢
€. !/+B_ .-_BE_B’

and this represents two parallel straight lines, real or
imaginary. .

Thus in every case the general equation represents one
of the conic sections enumerated in Art. 348.

350. Centre of a Conic Section. Def. The
centre of a conic section is a point such that all chords of
the conic which pass through it are bisected there.

‘When the equation to the conic is in the form
o+ 2hxy + byP +¢=0.cceenonn.... (1),
the origin is the centre.
For let («', ') be any point on (1), so that we have
ax?+ 20’y + by + ¢ =0 ...oviinniinnnnn. (2).
This equation may be written in the form
@ (- )+ 2 () (~ )+ b (~y) + 0 =0,
and hence shews that the point (—2', —y’) also lies on (1).
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But the points (2, %) and (-2, —') lie on the same
straight line through the origin, and are at equal distances
from the origin.

The chord of the conic which passes through the origin
and any point (2, ¥) of the curve is therefore bisected at
the origin.

The origin is therefore the centre.
351. When the equation to the conic is given in the

form
ax® + 2hay + by + 292 + 2fy +¢=0......... 1),
the origin is the centre only when both f and g are zero.

For, if the origin be the centre, then corresponding
to each point («, ') on (1), there must be also a point
(—«, —¥) lying on the curve.

Hence we must have
ax + 2ha’y’ + by'? + 29’ + 2fy’ +¢c=0...... 2),
and ax’® + 2ha'y’ + by* — 292’ - 2fy' +¢c=0...... (3).
Subtracting (3) from (2), we have
g« +fy' =0.
This relation is to be true for all the points (z, ¥')

which lie on the curve (1). But this can only be the case
when g =0 and f=0.

352. To obtain the coordinates of the centre of the
conic given by the general equation, and to obtain the
equation to the curve referred to awes through the centre
parallel to the original axes.

Transform the origin to the point (%, ), so that for «
- and y we have to substitute x+& and y +7. The equation
then becomes
a(x+ &) +2h(x+&)(y+7)+d(y+9)+29 (x+2)

+2f(y+9) +¢=0,
e ax®+ 2hxy + by® + 2x (ak # hy + g) + 2y (k& + by +f)
' + @i + 2h& g + b + 2%+ fF +¢=0 ......... (2)-

e _ASSR." -

et
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If the point (& 7) be the centre of the conic section, the
coefficients of « and y in the equation (2) must vanish, so
that we have

a+hg+g=0......c.c.ccoenin.n 3),
and RE+bF+f =0, (4).
Solving (3) and (4), we have, in general,
:i::ﬁ_l;g, and g:i’;_:{ .......... (5).
With these values the constant term in (2)
=ai® + 2h&g + b + 29% + 2fF + ¢
=z(ak+hg+g)+ghe+by+f)+gE+fi+c
=8I cC. e (6),

by equations (3) and (4),
_abe + 2fgh — af* — by* — ch?
- ab — h?

, by equations (5),
_ A
Tab- k¥’

where A is the discriminant of the given general equation

(Art. 118).
- The equation (2) can therefore be written in the form

=0.

A
ab -k’
This is the required equation referred to the new axes
through the centre.

ax® + 2hay + by® +

Bx. Find the centre of the conic section
2% - bry - 8y -z - 4y +6=0,
and its equation when transformed to the centre.
The centre is given by the equations 2z - §7 - =0, and
~$Z-37-2=0, 8o that = -4, and 7= -4.
The equation referred to the centre is then
223 - by - 3y%+¢'=0,
where ¢=-%.2-2.7+6=3+$+6="7. (Art.852)
The required equation is thus
242 - 5y - 3y*+7=0.
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353. Sometimes the equations (3) and (4) of the last
article do not give suitable values for © and 7.

For, if ab—A* be zero, the values of & and 7 in () are
both infinite. When ab - A* is zero, the conic section is a
parabola. [Art. 239.]

The centre of a parabola is therefore at infinity.

Again, if = %‘ - }‘_’,, the result (5) of the last article is
of the form § and the equations (3) and (4) reduce to the-
same equation, viz.,

at+hy+g=0.

‘We then have only one equation to determine the
centre, and there is therefore an infinite number of centres
all lying on the straight line

ax +hy+g=0.

In this case the conic section consists of a pair of
parallel straight lines, both parallel to the line of centres.

354. The student who is acquainted with the Dif-
ferential Calculus will observe, from equations (3) and (4)
of Art. 352, that the coordinates of the centre satisfy the
equations that are obtained by differentiating, with regard
to « and y, the original equation of the conic section.

It will also be observed that the coefficients of &, ¢, and
unity in the equations (3), (4), and (6) of Art. 352 are the
quantities (in the order in which they occur) which make
up the determinant of Art. 118,

This determinant being easy to write down, the student
may thence recollect the equations for the centre and the
value of c.

The reason why this relation holds will appear from the
next article,

888. Bx. Find the condition that the general equation of the
second degree may represent two straight lines.

The centre (Z, 7) of the conic is given by
aE+hT+9=0 ..ccooirrrerennnn. e (1),
and RBHOTHS=0.ceeieeiiiiiieiiieneeiend ).
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Also, if it be transformed to the centre as origin, the equation
becomes

az3+2hzy +by?+¢'=0..ceivenniiiiiiinnnn, (3),
where =gz +fF+c.
Now the equation (3) represents two straight lines if ¢’ be zero,
i.e. 1.f IEHfF+e=0.cccieniiiniiiniiniinnnn.e. (4).

equation therefore represents two straight lines if the relations
(1), (2), and (4) be simultaneously true.

Eliminating the quantities Z and J from these equations, we have,
by Art. 12,

a, h, g
hv br f =
g9 fic
This is the condition found in Art. 118.

3586. 7o find the equation to the asymptotes of the conic
section given by the general equation of the second degree.

Let the equation be

ar? + 2hxy + by® + 29z + 2fy +e=0......... (1).
Since the equation to the asymptotes has been shewn to
differ from the equation to the curve only in its constant
term, the required equation must be
ax® + 2hxy + by + 29z + 2fy +c+ A =0......(2).
Also (2) is to be a pair of straight lines.
Hence
ab(c+ Q)+ 2fgh —aft—bg*—(c+A)k*=0. (Art. 116.)
_ abc+2fgh—af?—bg’ —cl* A
Therefore A=— P b vy 'S
The required equation to the a.symptotes is therefore
" aa? + 2hxy + byt + 29x + Ufy +¢ - 56_75_0"'(2)'
Cor. Since the equation to the hyperbola, which is
conjugate to a given hyperbola, differs as much from the
equation to the common asymptotes as the original equation
does, it follows that the equation to the hyperbola, which is
conjugate to the hyperbola (1), is

ad? + 20y + by + g+ 3y + o= 2 0 =0,
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3887. To determine by an examination of the gereral
equation what kind of conic section it represents.

[On applying the method of Art. 313 to the ellipse and
parabola, it would be found that the asymptotes of the
ellipse are imaginary, and that a parabola only has one
asymptote, which is at an infinite distance and perpen-
dicular to its axis.]

The straight lines ax® + 2hxy + by*=0............... (1)
are parallel to the lines (2) of the last article, and hence
represent straight lines parallel to the asymptotes.

Now the equation (1) represents real, coincident, or
imaginary straight lines according as 4% is >= or <ab,
i.e. the asymptotes are real, coincident, or imaginary,
according as A®> = or <ab, t.e. the conic section is a hyper-
bola, parabola, or ellipse, according as A* > = or < ab.

Again, the lines (1) are at right angles, 1.e. the curve is
a rectangular hyperbola, if a + 6=0.

Also, by Art. 143, the general equation represents a
circle if a=5, and A=0.

Finally, by Art. 116, the equation represents a pair of
straight lines if A =0 ; also these straight lines are parallel
if the terms of the second degree form a perfect square, <.e.
if h* = ab.

358. The results for the general equation
ax® + 2haxy + by* + 29x + 2fy + ¢ =0

are collected in the following table, the axes of coordinates
being rectangular.

Curve. Condition.

Ellipse. h? < ab.
Parabola. k2= ab.
Hyperbola. h2>ab.

Circle. a=b, and A= 0.
Rectangular hyperbola. a+b=0.

Two straight lines, real or - A=0,

imaginary. e
: abc+2fgh — af®—bg® — ch*=0.

Two parallel straight lines. A=0, and A%=ab.
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If the axes of coordinates be oblique, the lines (1) of Art. 356 are
at right angles if a+b—-2hcos w=0 (Art. 93); so that the conic
section is a rectangular hyperbola if @ +b — 3k cos w=0.

Also, by Art. 175, the conic section is a cirele if b=a and
hR=a cos w.

The conditions for the other cases in the previous article are the
same for both oblique and rectangular axes.

‘What conics do the following equations represent? When

possible, find their centres, and also their equations referred to the
centre.

1. 122°-23zy + 10y - 25z + 26y =14.
2. 132%- 18zy +37y?+ 2z + 14y — 2=0.
3. ¥?-2\/3zy+322+62-4y+5=0.
4, 217 72zxy+23y? -4z - 28y - 48=0.
5. 6x22-5xy - 6y*+14z+5y +4=0.
6. 32%-8zxy-3y?+10z-13y +8=0.

Find the asymptotes of the following hyperbolas and also the
equations to their conjugate hyperbolas.

7. 82%+10zy-3y>-2z+4y=2. 8. y*-zy-22-by+z-6=0.
9. 5522 -120xy +20y3+ 64z - 48y =0.

10. 192%+24zy+y?- 222 - 6y=0.

11. If (z, 7) be the centre of the conic section

S (@, y) =ax?+ 2hzy + by? + 29z + 2fy + ¢ =0,
prove that the equation to the asymptotes is f (z, y) =1 (Z, ).

If ¢ be a variable quantity, find the locus of the point (x, y) when

12. z=a (t+;) and y =a (t—-:—).

13. z=at+bt* and y=>bt+ats.
14, z=1+¢t+t? and y=1-¢+413
If 0 be a variable angle, find the locus of the point (z, y) when
15. z=atan(0+a) and y=>btan (9+p).
16. z=acos(0+a) and y=>cos (6 +p8).
‘What are represented by the equations .
(z-y)*+(z—a)?=0. 18. zy+ai=a(z+y).
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19. #-y*=(y-a)(=*-¥’).

20. 2*+y*-zy(z+y)+at(y-2)=0. 21, (a*-a??-y*=O0.
22. B+y*+(z+y) (zy - ax—ay)=0. 23. z3+zy+y?=0.

24. (rcos@—a)(r-acosf)=0. 925. rsin?0=2acosé.

26. r+}=30080+sin0. 27. 117=l+ms0+J3sm0.
28. r(4-3sin?6)=8a cosd.

889. 7o trace the parabola given by the general equa-
tion of the second degree

ax® + 2haxy + by + 292+ 2y +c=0......... (1),
and to find its latus rectum.

First Method. Since the curve is a parabola we
have A?=ab, so that the terms of the second degree form
a perfect square.

Put then a=a® and =747 so that A=aB, and the
equation (1) becomes

(ax+ By)* + 29+ 2fy +¢=0............ (2).

Let the direction of the axes be changed so that the

a

B

straight line ax+ By=0, t.e. y=— 5, may be the new

axis of X.

X

- We have therefore to.turn the axes through an angle 0

such that tan § =— %
sinf=———~— . and cos = —'B— .

A/u.’-i-ﬁz Ja’+ﬁ’

, and therefore
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For = we have to substitute .
Xocos— Ysinf, 5.0, BPX+oY

Nari g’
and for y the quantity

Xsin0+ Yeosh, ie. 22 +BY a1 109)
Na? + 32
For ax + By we therefore substitute ¥ v/(a?+ 3?).
The equation (2) then becomes

Y2 (a®+ %) + J72__ﬁ[g(ﬁX+aY)+f(ﬂY—aX)]+c:0,

ie.  vrasy 9B _ox S-By e
@+@) (@) SR
. af — By
z.e. (Y-K)y?=2—~—"" [X-H]. .... - (3),
e I )
where Ker 9B (4),
(@+py!
O it = AN O I

and 2(a’+ﬂ“)§ H'_K—&—,—:E,,
. _ N+ p (ag + Bf) 5
t.e. H= (= By) c— @] (5).

The equation (3) represents a parabola whose latus
rectum is 2 —a——t& , whose axis is parallel to the new axis

a?+ “),

of X, and whose vertex referred to the new axes is the
point (H, K).

360. Fgquation of the axis, and coordinates of the
vertex, referred to the original axes.

Since the axis of the curve is parallel to the new axis of
X, it makes an angle 6 with the old axis of x, and hence
the perpendicular on it from the origin makes an angle
90° +6. :

Also the length of this perpendicular is X.
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The equation to the axis of the parabola is therefore
2 co8 (90° + 6) + y sin (90° + 6) = K,

s.e. —x8inf +ycosf =K,
ie. o+ py-KJ.;zrpsz_?f}g{ ......... (6).

Again, the vertex is the point in which the axis (6)
meets the curve (2).

‘We have therefore to solve (6) and (2), i.e. (6) and

+ 2
((a—‘%-d%+2gx+ Uy+c=0............. (7).
The solution of (6) and (7) therefore gives the required
coordinates of the vertex.

361. It was proved in Art. 224 that if PV be a
diameter of the parabola and @V the ordinate to it drawn
through any point @ of the curve, so that @V is parallel to
the tangent at P, and if 6 be the angle between the diameter
PV and the tangent at P, then

QV?=4acosec?d. PV ................ (1).
If QL be perpendicular to PV and QL be perpendicular
to the tangent at P, we have
QL=QVsin6, and QL =PVsin6,
so that (1) is QL*=4acosecl.QL'.
Hence the square of the perpendicular distance of any
point @ on the parabola from any diameter varies as the

perpendicular distance of @ from the tangent at the end of
the diameter.

Hence, if Az+By+C=0 be the equation of any
diameter and A'z+B'y+C’'=0 be the equation of the
tangent at its end, the equation to the parabola is

‘ (Az+ By +C)* =X (A’a: + B’y +C).oenll 2),
where \ is some constant.

Conversely, if the equation to a pmbola can be reduced
to. the form (2), then
Ax+By+C’_0 ...... Vebernereneens (3)
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is a diameter of the parabola and the axis of the parabola is
parallel to (3).

‘We shall apply this property in the following article.

362. To trace the parabola given by the general equa-
tion of the second degree

ax® + 2hxy + by® + 29x + 2fy +c=0.........(1).

8econd Method. Since the curve is a parabola, the
terms of the second degree must form a perfect square

and A*=ab.

Put then a=a? and 5=p? so that A=af, and the
equation (1) becomes

(ax+ By)’=— 292+ 2fy +¢)............ 2).

As in the last article the straight line ax+ By=01is a
diameter, and the axis of the parabola is therefore parallel
to it, and so its equation is of the form

The equation (2) may therefore be written
(a + By + A\)*=—(29% + 2fy + c) + A\* + 2\ (ax + By)

=22Na-g)+2y(BA-f)+ A —c ....... (4).

Choose A s0 that the straight lines
ax+By+A=0............ (5)
and 2x()\a. 9)+2y(BA—f)+A?=c=0....... (6)

are at right angles, 4.e. so that _
a(Aa—g)+B(Br-f)=0,

: +

t.e. 80 that 'Ii f+ ;{ ....................... ).

The lines (5) and (6) are now, by the last article, a
diameter and a tangent at its extremity ; also, since they

are at right angles, they must be the axis a.nd the tangent
at the vertex.
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The equation (4) may now, by (7), be written
2 (af -
fa+ By + 3= 2L L (g oy )
o+ B'
=t (A" —c),
BRI L
ie {w+ﬁy_ﬁ§}’_2(af—ﬁg) Br—ay+p
’ :\/a’+ﬂ2 (a’+ﬁ2)* ’ A\/a'+ﬁ’
PN’=2(af—B§) .AN,
(a* + B7)
where PN is the perpendicular from any point P of the
curve on the axis, and A4 is the vertex. A
Hence the axis and tangent at the vertex are the lines
(5) and (6), where X has the value (7), and the latus rectum
’ =9 _a'f - ﬁg .
(@+p)
8638. Bx. Trace the parabola
922 - 247y + 162 — 18z — 101y + 19=0.
The equation is
(Bz—4y)?- 182~ 101y +19=0 .................. ).

First Method. Take 3z - 4y=0 as the new axis of z, i.e. turn
the axes through an angle 0, where tan 0=%, and therefore sin =%
and cos 8=4%.

where

e

For x we therefore substitute Xcos@— Ysind, i.e. ‘&;—3 Y; for
y we put Xsiné+Ycosd, i.e. 3)(_-;-iY, 'and hence for 3z -4y the

quantity - 5Y.
The equation (1) therefore becomes
2572~ } [72X - 54Y] - } [303X + 404Y]+19=0,
ie. 25Y2- 75X -70Y+19=0..................... ).
This is the equation to the curve referred to the axes OX and OY.
But (2) can be written in the form

Y2-—-=38X-1%§,

ie. (Y-3P=3X-32+48=3 (X+3).




TRACING OF PARABOLAS. 337

Take a point 4 whose coordinates referred to OX and OY are -3
and §, and draw AL and 4 M parallel to OX and OY respectively.

P
A y
N
N
N
Y \ »
\ L
.
Ay ‘\)"’
M N X
\\ R4
“\ -5
.
A A\
. Q
\
»70 x

Referred to AL and AM the equation to the parabola is ¥2=3X.
It is therefore a parabola, whose vertex is 4, whose latus rectum is 3,
and whose axis is AL.

Second Method. The equation (1) can be written

Bz - 4y +N\)P?=(6A+18) 2 +y (101 —8\) +A2-19 ...... 3)-
Choose \ so that the straight lines
. 8z - 4y +A=0
and (6A+18) z+y (101 -8\) +A2-19=0
may be at right angles.

Hence \ is given by
3 (61 +18) — 4 (101 —8\) =0 (Art. 69),
and therefore A=17.
The equation (3) then becomes

(Bz—4y +17)2=15 (4z+3y +2),

- 2
ie. 3 Jé? Ty =3. “:"/gg” .................. ).
Let AL be the straight line
_ 32— 4y +T=0 ..ooooooeereernn, ),
and 4M the straight line 4z+3y+2=0..................ooeenninnne (6)-
These are at right angles.

If P be any point on the parabola and PN be perpendicular to
AL, the equation (4) gives PN2=3, AN.

Hence, as in the first method, we have the parabola.
.The vertex is found by solving (5) and (6) and is therefore the
pomt ( - Hv H)

L. . 22
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In drawing curves it is often advisable, as a verification, to find
whether they cut the original axes of coordinates.

Thus the points in which the given parabola cuts the axis of z
mloundbgy;n&ngy Omtheongmalequahon. The resulting
equation is 18z +19=0, which has imaginary roots.

The parabola does not therefore meet Oz.

SnnihﬂyltmeetsOympmntsglvm by 16y*- 101y + 19=0, the
roots of which are nearly 6} and

Thev;lnaofOandOQ’abonldtbere!ombeneulyﬁmd&}.

364. To find the direction and magnitude of the axes

of the central conic section
ar +2hay +byr=1.................. (1).

First Method. We know that, when the equation to
a central conic section has no term containing xy and the
axes are rec r, the axes of coordinates are t.he axes of
the curve.

Now in Art. 349 we shewed that, to get rid of the term
involving xy, we must turn the axes through an angle 6

given by

tan 20= 20 e, (2).

The axes of the curve are therefore inclined to the axes
of coordinates at an angle 6 given by (2).
Now (2) can be written

2 tan 6 2h
T—tan?60 a—-0_ A(say),
. tan?@+2Atanf-1=0............. 3).

This, being a quadratic equation, gives two values for 0,
which differ by a right angle, since the product of the two
values of tan 6 is — 1. Let these values be 6, and 6,, which
are therefore the inclinations of the required axes of the
curve to the axis of x.

Again, in polar coordinates, equation (l) may be written

7% (@ cos? 6 + 2h cos O sin 8 + b sin® 6) = 1 = cos? @ + sin® 6,
ie.
Po 0RO sin®0 __ litan’d
acos? @+ 2hcos Osin 6 +bsin?0 ~ a + 2k tan 0 + b tan*d
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If in (4) we substitute either value of tan @ derived
from (3) we obtain the length of the corresponding
semi-axis.

The directions and magnitudes of the axes are therefore
both found.

Second Method. The directions of the axes of the
conic are, as in the first method, given by
tan 20 = —%—h b
‘When referred to the axes of the conic section as the
axes of coordinates, let the equation become

Since the equation (1) has become equation (5) by a
change of axes without a change of origin, we have, by
Art, 135,

1 1
=2t B a+bo (6),
1
and g ab =R (7).

These two equations easily determine the semi-axes a
and B. [For if from the square of (6) we subtract four

1 l
times equation (7) we have (;2 ,8’) , and henoe B, 5

hence by (6) we get 5 a.nd — :I

The difficulty of thls method lies in the fact that we
cannot always easily determine to which direction for an
axis the value a belongs and to which the value B.

If the original axes be inclined at an angle v, the equa-
tions (6) and (7) are, by Art. 137,

l+ l_a+b 2_kc§)sw
@ B sin’ w ’

and =

22—2
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Cor. 1. The reciprocals of the squares of the semi-
axes are, by (6) and (7), the roots of the equation

Z*—(a+d)Z+ab-h*=0.
Cor. 2. From equation (4) we have

Area of an ellipse = mafl = — T

Nab -’
865. Bx. 1. Trace the curve
142 - 47y + 11y? - 442 - 58y + T1=0............... (1).

Since ( —2)2- 14.11 is negative, the curve is an ellipse. [Art.358.]
By Art. 352 the centre (7, y) of the curve is given by the equations

147 -2y -22=0, and -2z +11y-29=0.
Hence =2, and y=3.
The equation referred to parallel axes through the centre is

therefore 1422 - 42y + 1192+ ¢’ =0,
where c'=-22%-29y +71= - 60,
80 that the equation is
1423 - 42y + 11y2=60.....cccoceenreneennn 2).
The directions of the axes are given by
2h -4
tan20=2 5= u-u= b
2tan @

so that 1 tan3o™ ¥
and henoe 2tan?0 -3 tan 6 -2=0.

Therefore tan 6, =2, and tan ,= - §.
Referred to polar coordinates the equation (2) is
72(14 00s? 6 - 4 cos 0 sin 0 + 11 8in? 6) = 60 (cos? 6 + sin? 0),

. _ 1+tan26
be =60 Ttan 6+ 11 e 0"
144
—_ 2 - T =
When tan 6, =3, 7, _60x14_8+44_6.
1+3%

When tan8,= -}, r,2=60x =4.

14+2432
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The lengths of the semi-axes are therefore ,/6 and 2.

Hence, to draw the curve,
take the point C, whose coordi-
nates are (2, 3).

Through it draw A’CA4 in-
clined at an angle tan-12to the |/
axis of z and mark off

A'C=CA=,/6.

Draw BCB’ at right angles
to ACA' and take B'C=CB=2.

The required ellipse has 44’
and BB’ as its axes. A

It would be found, as a veri- C M X
fication, that the curve does not meet the original axis of z, and
that it meets the axis of y at distances from the origin equal to
about 2 and 3} respectively.

Bx. 8. Trace the curve

22— 82y +y3+10z - 10y +21=0.................. ).
- 2
Since (T:'I ) - 1.1 is positive, the curve is a hyperbola.
[Art. 358.]
The centre (T, 7) is given by
i -gy+5=o,
. -3_
and ’é"z +y -5 =0v
so that = -2, and §=2.
The equation to the curve, referred to parallel axes through the
centre, is then
22— 8zy + 92 +5(-2) - 5x2+21=0,
i.e. 2 -Bzy+yt=-1l..cooirni 2).
The direction of the axes is given by
2h -3
tan 20:(;—_6: l;i=® ,
so that 20=90° or 270°,
and hence 0,=45° and 6,=185°

The equation (2) in polar coordinates is
72(008% 0 — 3 cos 9 8in 0 + 8in? §) = — (sin? 6 + cos? ),
1+tan3é

v ™= [~ Stan o+ tané’



342 COORDINATE GEOMETRY.

2
1= 3+l

=185° r3= — =<
When 6,=135° rd= 1+3+1 5 » 80 that r,_N/

To construct the curve take the point C whose coordinates are —2
and 2. Through C draw a straight line 4C4’ indlined at 45° to the
axis of z and mark off A'C=C4=,/3.

Also through 4 draw a straight line KAK’ perpendicular to C4
and take AK=K’A=,/§. By Art. 315, CK and CK’ are then the
asymptotes.

The curve is therefore a hyperbola whose centre is C, whose
transverse axis is 4’4, and whose asymptotes are CK and CK'.

When 0,=45°, r?= -=3, so that r,=,/2.

s
~

[3)

O
b3

On putting =0 it will be found that the curve meets the axis of
y where y=38 or 7, and, on putting y=0, that it meets the axis of =
where z=-38or - 7.

Henoe 0Q=38, 0Q'=17, OR=3, and OR'=T.

886. 7o find the eccentricity of the central comic section

First, let 2 —ab be negative, so that the curve is
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an ellipse, and let the equation to the ellipse, referred to
its axes, be
@y 1

g
By the theory of Invariants (Art. 135) we have

and e =@b =R (3).

Also, if e be the eccéntricity, we have, if « be> 8, /
a® - 32
f=—,
a

L& e p
T2-d @+
But, from (2) and (3), we have

a+b 1
W = and @ =

Hence
e by + 442
==+ (T P A=+ ‘/(“al).;)’:’ R
. & Na-byp+dn

R I e ().
This equation at once gives ¢

Secondly, let 2°—ab be positive, so that the curve is
a hyperbola, and let the equation referred to its principal

axes be
a? y’_l
a g7
so that in this case
1 1 1 o (72
@“Fz=“+b’a’nd_‘i'§2—“b—h =— (h*—ab).
Hence a—ﬂ’———g'-'-b and o 1

Wb’
—_ 2
80 that o3+ 8=+ (@ — F)P+ daBt = “’(i“h__b)a—zi—.
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In this case, if ¢ be the eccentricity, we have

o’ +
=",
2 (a—b)? 2
& @ iR
-8 d- a+b

This equation gives €.

In each case we see that e is a root of the equation

( e )’ _(a—bp+4W°
2—-¢) (a+bp '’
t.e. of the equation
&t (ab—1°) + {(a— b)* + 44°} (¢*— 1) = 0.
367. To obtain the foci of the central conic
ax® + 2hay + by = 1.

Let the direction of the axes of the conic be obtained as

in Art. 364, and let 6, be the inclination of the major axis

in the case of the ellipse, and the transverse axis in the case
of the hyperbola, to the axis of .

Let 2 be the square of the radius eorresponding to 6,,
and let 7,2 be the square of the radius corresponding to the
perpendicular direction. [In the case of the hyperbola r,2
will be a negative quantity.]

The distance of the focus from the centre is /r,7 — r;2
(Arts. 247 and 295). One focus will therefore be the point

(~/ r2—r2cos b, N/r2—r?sinb),
and the other will be
(- J;;’ — 42 cos 0, — ~/r,’ —7,28in 6,).
Bx. Find the foci of the ellipse traced in Art. 365.
Here tan 6,= 2, so that sino,=5g

Also r,?=6, and r,2=4, so that \/r,7—r=,/2.
The coordinates of the foci referred to axes through C are therefore

(% %) = (- -3%)-

and oosol=~/—l5-.
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Their coordinates referred to the original axes OX and OY are
L2 2/2\ . V2 2.2
J5’ g* ~/5), 1.6.(2*~/5, 3% ~/5)

368. The method of obtaining the coordinates of the
focus of a parabola given by the general equation may be
exemplified by taking the example of Art. 363.

Here it was shewn that the latus rectum is equal to 3,
so that, if S be the focus, 45 is §.

It was also shewn that the coordmates of A referred to
OX and 0Y are — % and .

The coordinates of 3 referred to the same axes are
—%2+3and %, d.e J55and Z.
Its coordinates referred to the original axes are therefore
75 co8 —%sin 6 and ;% sin 6+ I cos 6,
t.e. zo-t—%-3 and 5. 3+ 4.4,
i.e. — 34 and 133.
In Art. 393 equations will be found to give the foci of

any conic section directly, so that the conic need not first
be traced.

869. Bx. 1. Trace the curve
3(3z-2y+4)2+2(22+3y —5)2=39 ............... (1).
The equation may be written
3z — 2y +4\2 2248y -5\%_
J- ) 2( t ) =B @)
Now the straight lines 8xz—2y+4=0 and 2z+3y-6=0 are at
right angles. Let them be CM and
CN, intersecting in C which is the
pomt ( - ‘l’l‘» H)'
If P be any point on the curve
and PM and PN the perpendiculars
upon these lines, the lengths of PM

and PN are
Sz-2%y+4 . 2543y-5
iz 24 — -

Henoe equation (2) states that
3PM3%+2PN2=3,
i.e. Pu? + }E—
1 P
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The locus of P is therefore an ellipse whose semi-axes measured
along CM and CN are ,/§ and 1 respectively.
Bx. 3. What is represented by the equation
(22— a*p+(y* - a¥)t=at?
The equation may be written in the form
TA+y* - 2a2 (z2+ y?) +a*=0,

i.e. (.'t2 + y’)’ -2a? (z" + y’) +at= gzayz»’
i.e. (22 +y2 - a?)? - (J22y)2=0,
ie. (214 /B2y +y1 - ) (28~ 22y + 4 - 0 =O0.

The locus therefore consists of the two ellipses
23+4/2zy +y2-a?=0, and z3-,/2zy+y%- a?=0.
These ellipses are equal and their semi-axes would be found to be
a/2+J2 and an/2-,/2.

The major axis of the first is inclined at an angle of 135° to the
axis of z, and that of the second at an angle of 45°.

EXAMPLES. XLI

Trace the parabolas
(= - 4y)*=51y. 2. (z-yP=z+y+1
(6z — 12y)*=2azx + 29ay + @
(4= + 3y + 15)2=5 (3z — 4y).
1622+ 24zy + 9y% - bz - 10y +1=0.
923 4 24zy + 16y — 4y — 2+ 7=0.
14422 - 1202y + 25y2 + 6192 - 272y + 663 =0, and find its focus.
162 — 24y + 9y?+ 32z + 86y - 39=0.
422 - 4oy +y? - 122+ 6y + 9=0.
Find the position and magnitude of the axes of the conics
10. 1222122y +Ty?=48. 11. 322+ 2zy+3y*=8.
12. 2*-=y-6y*=6.
Trace the following central conics.
13. 2?-2zycos2a+y?=2a2 14, 2?-2zy cosec 2a +y2=a?
15. zy=a(z+y). 16. zy-y'=a?
17. y?-2zy+222+22-2y=0. 18. 2?+zy+y*+z+y=1.

R

©EN®m
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19. 2234 3xy-2y*-Tz+y-2=0.
20. 402+ 36zy + 25y ~ 196z - 132y + 205 =0.
21. 92%- 322y +9y?+ 60z + 10y =643.
22. z*-zy+ - 2az - 6oy +7a2=0.
23, 1027 482y — 10y®+ 88z + 44y — 5§ =0.
24, 422+ 27zy+36y3-142- 31y -6=0.
25. (3z-4y+a)(4z+3y +a)=ad
26. 3(2z-3y+4)*+2(8x+2y-5)2="78.
97. 2(3z-4y+5)2—8(4z+ 3y — 10)2=150.
Find the products of the semi-axes of the conics
28. y*-4zy+522=2. 20. 4(3z+4y-T)+3@dr-3y+9)2=3.
30. 1122+16zy - y?- 70z — 40y +82=0.
Find the foci and the eccentricity of the conics
31. «*-3zy+4ax=2a% 32. 4zy-3x?-2ay=0.
33. 52%+6zy+5y*+ 127+ 4y +6=0.
M. P+day+y?-22+2y-6=0.
35. Shew that the latus rectum of the parabola
(a*+ %) (22 +y%) =(bz + ay — ab)?
is 2ab+\Jat b2
36. Prove that the lengths of the semi-axes of the conic
az?+2hzy + ay’=d

o 4 .na fI
ar a+h a-h
respectively, and that their equation is 22— »2=0.
37. Prove that the squares of the semi-axes of the conic
az?+2hxy + by + 29z + 2fy +¢=0
are 2A+{(ad - 1?) (a+ b+ \/(a - D>+ 413)},
where A is the discriminant.
38. If A be a variable parameter, prove that the locus of the

vertices of the hyperbolas given by the equation z2-y2+\zy=a? is
the carve (22 +y?)?=a? (22 - y?).

39. If the point (at)? 2at)) on the parabola y?=4az be called the
point ¢;, prove that the axis of the second parabola through the four
points ¢, t,, t5, and ¢, makes with the axis of the first an angle

cot-1 (‘;..i‘zi%ff.k)
1 .

Prove also that if two parabolas meet in four points the distances
of the centroid of the four points from the axes are proportional to the
latera recta.
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40, If the product of the semi-axes of the conic 23+ 2zy + 17y2=8
be nlnilty, shew that the axes of coordinates are inclined at an angle
sin—

4]1. Sketch the curve 62— Tzy - 5y3— 4z + 11y =2, the axes being
inclined at an angle of 80°.

42, Prove that the ecocentricity of the conic given by the general
equation satisfies the relation

é  4_la+b-2hoosw)
1-et (ab - 1?)sin?w ’
where w is the angle between the axes.

43. The axes being changed in any way, without any change of
origin, prove that in’the general equation of the second degree the
quantities ¢, [&9_72@0' af*+bg° - Agh 2jgh and .A

sinw ~ sin’w sin?w
invariants, in addition to the quantities in Art. 187.

[On making the most general substitutions of Art. 132 it is clear
that ¢ is unaltered; proceed as in Art. 137, but introduce the condition
that the resulting expressions are equal to the product of two linear
quantities (Art. 116); the results will then follow. ]




CHAPTER XVL
THE GENERAL CONIC.

370. In the present chapter we shall consider proper-
ties of conic sections which are given by the general equation
of the second degree, viz.

ax® + 2hxy + by + 292+ 2fy +¢c=0......... 1).

For brevity, the left-hand side of this equation is often
called ¢ (z, ), so that the general equation to a conic is

¢ (2, y)=0.
Similarly, ¢ («, ¥') denotes the value of the left-hand
side of (1) when &' and ¥’ are substituted for x and y.

The equation (1) is often also written in the form §=0.

371. On dividing by ¢, the equation (1) contains five
: a g S
independent constants PRI and P

To determine these five constants, we shall therefore
require five conditions. Conversely, if five independent
conditions be given, the constants can be determined.
Only one conic, or, at any rate, only a finite number of
conics, can be drawn to satisfy five independent conditions.

372. 7o find the equation to the tangent at any point
(@, ¥') of the conic section

¢ (x, y) =ax® + 2hay + by* + 2g9x + 2fy + ¢=0...(1).
Let (", ") be any other point on the conic.



350 COORDINATE GEOMETRY.

The equation to the straight line joining this point to
@ y) is oy

Y-y ="— (=) (2)-

Since both (', ¥') and (a:" , ") lie on (1), we have
ax® + 2hax'y’ + by + 292’ + 2fy' +¢=0...... 3),
and ax’? + 2hx’"y” + by + 292" + 2fy" +¢c=0...... (4).
Hence, by subtraction, we ha.ve
a(@?-2"”) + 2h(xy —a"y") + b (¥*—y"?)

- +2¢g («' — )+2f(J ¥y)=0........ (5).
But

2 (xlyl Il II) (x + x ) (yl _yl’) + (ml - xll) (yl + yll),
so0 that (5) can be written in the form
@ ~a) [0 + ) + by +¥") + %)
+( -y ) [A @ +2)+ b (Y +y") + 2]=0,
Y-y _ a@+2")+h(y +y)+29
' - k(@ +2")+b (Y +y")+2f
The equation to any secant is therefore
f__a@+2)+h(y +y ) +29
Y Y SR+ by +y )+ ( — ). (6)-
To obtain the equation to the tangent a.t («, y'), we put
z”"=a and y"” =y’ in this equation, and it becomes

, ax'+hy + ,
y-y=- ha;’+bg +_}q'( x— ),
t.e. (a2’ +hy + g)x+ (ha’ + by + 1)y

= ax’® + 2ha’y’ +by* + g’ + fy'
=— g’ — fy’ — ¢, by equation (3).
The required equation is therefore

axx’'+h (xy' +xy)+byy' +g (x+x)+f(y+y)

Cor. 1. The equation (7) may be written down, from
the general equation of the second degree, by substituting
xx’ for o?, yy' for 3%, xy' + «'y for 2xy, x+«' for 2z, and
y+y for 2y. (Cf. Art. 152.)
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Cor. 2. If the conic pass through the origin we have
¢=0, and then the tangent at the origin (where ' =0 and
y=0)is gz +fy =
1.e. the equation to the tangent at the origin is obtained by

equating to zero the terms of the lowest degree in the
equation to the conic.

878. The equation of the previous article may also be obtained
as follows; If (z', y’) and (z”, y”) be two points on the conic section,
the equatlon to the line j joining them is

a(@z-z)(z-z")+h[(z-2)(y-y")+(z-2") (y-y)N+dly-¥)y-y")
=az?+2hay + by + 39z +2fy +e......... (1).

For the terms of the second degree on the two sides of (1) cancel,

and the equation reduces to one of the first degree, thus representing
a straight line.

Also, since («/, y’) lies on the curve, the equation is satisfied by
putting z=2' and y=y’".

Hence (2’, y') is a point lying on (1).
8o (z”, y”) lies on (1).
It therefore is the straight line joining them.
Putting 2" =2’ and y” =y’ we have, as the equation to the tangent
at (7, '),
a(z-2P+2h(z-2)(y-y)+db@y-y'P
=ax?+ 2hry + by + 29z + 2fy +c,
te. 2axx’ +2h (z'y+xy’)+ 2byy’ + 292+ 2fy +c
=ax?+ 2hz’y’ + by"?
= — 292’ - 2fy’ — ¢, since (z', y’) lies on the conic.
Hence the equation (7) of the last article.

874. To find the condition that any straight line

le4my+n=0.......c.coeenvinni . (1),
may touch the conic

ax?®+ 2hxy + by? + 292+ 2fy +¢=0 ............... (2)

Substituting for y in (2) from (1), we have for the equation giving
the abscissa of the points of intersection of (1) and (2),

22 (am? — 3him + bl?) — 2z (kmn — bln — gm? + flm)
+bn3-2fmn+cem?=0............ (3).
If (1) be a tangent, the values of z given by (3) must be equal.
The condition for this is, (Art. 1,)
(hmm — bln - gm3 + flm)? = (am? - 2him + bi2) (bn? - 2fmn + cm?).
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On simplifying, we have, after division by m3,
B (be — %) + m3 (ca — g%) +n3 (ab — h?) + 2mn (gh — af ) + 2nl (hf — byg)
+2im (fg - ch)=0.
Bx. Find the equations to the tangents to the conic
23 +4zy+3y2-52-6y+3=0 .................. (1),
which are parallel to the straight line z +4y=0.
The equation to any such tangent is
ZHMY+C=0....oooiiirien @,
where ¢ is to be determined.
This straight line meets (1) in points given by
8a% — 2z (5¢ +28) + 3¢3 + 24c + 48=0.
The roots of this equation are equal, i.c. the line (2) is a tangent,
if {2(5c+28)}2=4.3.(3c2+24c +48), i.e.if c=-5or -8.
The required tangents are therefore
z+4y-5=0, and z+4y-8=0.
375. Asin Arts. 214 and 274 it may be proved that
the polar of («/, y') with respect to ¢ (x, y) =0 is
(o +hy' +g)x+(ha’ + by +f)y + g« +fy' +c=0.
The form of the equation to a polar is therefore the
same as that of a tangent.

Just as in Art. 217 it may now be shewn that, if the
polar of P passes through 7, the polar of 7' passes through
P

The chord of the conic which is bisected at (', %),
being parallel to the polar of (2, ') [Arts. 221 and 280],
has as equation

(o +hy' +g) (v — ) + (b’ + by + f) (y — ) = 0.

376. To find the equation to the diameter bisecting all
chords parallel to the straight line y=mx. (See fig. Art. 279.)

Any such chordis y=mx+ K .....cccvennnnneni. (1).

This meets the conic section

ax® + 2hxy + by? + 29 + 2fy + ¢ =0
in points whose abscisse are given by
ax’® + 2hx (mx + K) + b (mx+ K)* + 29+ 2f (max + K)+ ¢=0,
i.e. by o*(a+ 2hm + bm?) + 2x (hK + bmK + g + fm)
+bK2+2fK +¢c=0.
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If x, and w, be the roots of this equation, we therefore
have
(h+bm) K + g + fm

a + 2hm + bm?

Let (X, Y) be the middle point of the required chord,
so that

otx,=—2

x Ot _(A+dm) K+ g+ fin

3 ) e we SELRETRE 2).
Also, since (X, Y) lies on (1) we have
Y=mX+K..ccoueueeen. .. 3)

If between (2) and (3) we eliminate X we have a
relation between X and Y. -

This relation is
—(a + 2km + bm*) X = (h + bm) (Y —mX) + g + fm,
t.e. X(a+hm)+ Y (h+bm)+g+fm=0.

The locus of the required middle point is therefore the ‘
straight line whose equation is

z(a + hm) +y (h +bm) + g + fm=0.

If this be parallel to the straight line y=m'z, we
have

,  a+hm
| iy wry e IR (4),
e a+h(m4m)4+bmm'=0............... (5).

This is therefore the condition that the two straight
lines y=mx and y=m'z may be parallel to conjugate
diameters of the conic given by the general equation.

877. To find the condition that the pair of straight lines, whose
equation is

A2?4+2Hzy + By?=0 ........ccovvrnrennnn.. 1),
- may be parallel to conjugate diameters of the general conic
az?+2hzy + by + 292+ 2fy +¢=0 ............... ).

Let the equations of the straight lines represented by (1) be y =mz
and y=m'z, so that (1) is equivalent to

B (y - mz) (y ~ m'z) =0,

and hence m+m'= —25, and mm'=

L. 23
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By the condition of the last article it therefore follows that the
lines (1) are parallel to conjugate diameters if

2H 4
a+h ( B ) .bﬁ-—o,
i.e. if Ab-2Hh+ Ba=0.

878. To prove that two concentric conic sections always have a

pair, and only one pair, of common conjugate diameters and to find
their equation.

Let the two concentric conic sections be

az?+ 2hay +by?=1 .....cccovuerennininns (1),

and a'B4+ 2Ty +0Y3=1.....ccovvvreririnnnnns 2).
The straight lines Aoy )
Az3+2Hzy+By?=0......cc.evvnvnunnnnns (3),

are conjugate diameters of both (1) and (2) if
Ab -2Hh + Ba=0,

and AY - 2HK +Ba' =
Solving these two equations we have
A -2H B

W -Wa ab—ab oW -bh
Substituting these values in (3), we see that the straight lines
23 (ha’ - Wa) - zy (ab’ - a’b) +y3 (bW - 'R)=0......... 4)
are always conjugate diameters of both (1) and (2).
Hence there is always a pair of conjugate diameters, real, ooinci-

dent, or imaginary, which are common to any two concentric conic
sections,

EXAMPLES. XLIIL

1. How many other conditions can a conic section satisfy when
we are given (1) its centre, (2) its focus, (3) its eocentricity, ;4) its
axes, (5) a tangent, (6) a tangent and its point of contact, (7) the
position of one of its asymptotes?

2. Find the condition that the straight line lzr+my=1 may
touch the bola (az - by)? -2 (a?+b?) (az +by) + (a +1?)*=0, and
shew that if this straight line meet the axes in P and Q, then PQ
will, when it is a tangent, subtend a right angle at the point (g, b).

8. Two parabolas have a common focus; prove that the perpen
dicular from it upon the common tangent passes through the
intersection of the directrices.
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. 23 Sy v, . o4
4, Shew that the conic & + Eoosa+ Fz:mn’a is insoribed in
the rectangle, the equations to whose sides are z2=a? and y2="0?%, and
that the quadrilateral formed by joining the points of contact is of
constant perimeter 4 o/a%+ 0%, whatever be the value of a. '
5. A variable tangent to a conic meets two fixed tangents in two
points, P and Q; prove that the locus of the middle point of PQ is a
conic which becomes a straight line when the given conic is a parabola.
6. Prove that the chord of contact of tangents, drawn from an
external point to the conic ax®+ 2hzy + by2=1, subtends a right angle
at the centre if the point lie on the conic
@* (a®+ 1%) + 2k (a + b) zy +y? (A2 + V%) =a+b. -
7. Given the focus and directrix of a conic, prove that the polar
of a given point with respect to it passes through another fixed point.
8. Prove that the locus of the centres of conics which touch the
axes at distances a and b from the origin is the straight line ay =bz.
9. Prove that the locus of the poles of tangents to the conic
.az?+2hzy + by*=1 with respect to the conic a'2?+2h'zy+b'y?=1 is
the conic
a (h'z+b'y)2 -2k (a’z+ h'y) (K'z+b'y) + b (a'z+ W'y)2=ab - k2.
10. Find the equations to the straight lines which are conjugate
to the coordinate axes with respect to the conic 422+ 2Hzy + By?=1.
Find the condition that they may coincide, and interpret the
result.
11. Find the equation to the common conjugate diameters of the
conics (1) z3+4zy+6y?=1 and 222+ 6zy +9y?=1,
and (2) 247 bzy +3y*=1 and 22%+8zy - Fyi=1.
12. Prove that the points of intersection of the conies
az?+2hzy + by?=1 and a'z?+3h'zy +by?=1
are at the ends of conjugate diameters of the first conic, if
ab’ +a'b - 2hK' =2 (ab - K3).
13.. Prove that the equation to the equi-conjugate diameters of

. 2_q s, a3+ 2hTy +by? 2 (224y?)
the conic ax?+ 2hxy + by?=1is Ty ==

379. Two conics, in general, intersect in four points,
real or imaginary.

For the general equation to two conics can be written
in the form

ax® + 2x (hy + g) + by + 2fy + ¢ =0,
and a®+ 2z (Ky+g)+b0y +2f'y + ' =0.

23—2
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Eliminating x from these equations, we find that the
result is an equation of the fourth degree in y, giving
therefore four values, real or imaginary, for y. Also, by
eliminating «? from these two equations, we see that there
is only one value of z for each value of y. There are there-
fore only four points of intersection.

380. Equation to any conic passing through the inter-
section of two given conics.

Let S=ax®+2hay+by+ 292+ 2fy+¢=0......(1),
and S'=ade®+ 2k xy+ by + 292+ 2f 'y + ¢’ =0...(2)
be the equations to the two given conics.

Then NEED VA | R 3)
is the equation to any conic passing through the inter-
sections of (1) and (2).

For, since S and S’ are both of the second degree in z

and y, the equation (3) is of the second degree, and hence
represents a conic section.

Alsgo, since (3) is satisfied when both S and S’ are zero,
it is satisfied by the points (real or imaginary) which are
common to (1) and (2).

Hence (3) is a conic which passes through the intersec-
tions of (1) and (2).

381. .To find the equations to the straight lines passing
through the intersections of two conics given by the general
equations.

As in the last article, the equation

(a—A)a?+2(h— M)y + (b—N) 2+ 2 (9 — Ag) =
+2(f-N")y+(c—A)=0......(1),

represents some conic through the intersections of the given

conics.

Now, by Art. 116, (1) represents straight lines if
(@ — Aa) (b= AB) (= M) + 2 (f = M') (9~ Ag) (h— AK)
~(@=2a) (f = P = (b= Nb) (g = \g)) — (6 = \) (b — A"
=0...... (2).
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Now (2) is a cubic equation. The three values of A
found from it will, when substituted successively in (1),
give the three pairs of straight lines which can be drawn
through the (real or imaginary) intersections of the two
conics.

Also, since a cubic equation always has one real root,
one value of A is real, and it could be shown that there can
always be drawn one pair of real straight lines through the
intersections of two conics.

382. Al conics which pass through the intersections of
two rectangular hyperbolas are themselves rectangular hyper-
bolas.

In this case, if S=0 and §'=0 be the two rectangular
hyperbolas, we have

a+b=0, and o' +5'=0. (Art. 358.)

Hence, in the conic §-— )\S 0, the sum of the co-
efficients of «? and 3?

=(a—Aa’) + (b—Ab')=(a + b) — A (a’ +b')=0.
Hence, the conic §— A8’ =0, i.e. any conic through the

intersections of the two rectangular hyperbolas, is itself a
rectangular hyperbola.

Cor. If two rectangular hyperbolas interseet in four points
A4, B, C, and D, the two straight lines 4D and B(, which are a conic
through the intersection of the two hyperbolas, must be a rectangular
hyperbola. Hence 4D and BC must be at right angles. Similarly,
BD and C4,and CD and 4B, must be at right angles. Hence D is
the orthocentre of the triangle 4BC,

Therefore, if two rectangular hyperbolas intersect in four points,
each point is the orthocentre of the triangle formed by the other
three.

383. IfL=0,M=0, N=0, and R =0 be the equations
to the four sides of a quadrilateral taken in order, the
equation to any conic passing through its angular points is

LN=X. MR .........ccc.ccve... 1).

For L=0 passes through one pair of its angular points
and N =0 passes through the other pair. Hence LN =0 is
the equation to a conic (viz. a pair of straight lines) passing
through the four angular points.
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" Similarly #R-=0 is the equation to another conic
passing through the four points.

Hence LN =A. MR is the equation to any conic through
the four points.

Geometrical meaning. Since L is proportional to the perpen-
dicular from any point (z, y) upon the straight line L =0, the
relation (1) states that the product of the perpendiculars from any
point of the curve upon the straight lines L=0 and N=0 is propor-
tional to the product of the perpendiculars from the same point upon
M=0 and R=0.

Henoe If a conic circumscribe a quadrilateral, the ratio of the
product of the perpendiculars from any point P of the conic upon two
opposite sides of the quadrilateral to the product of the perpendiculars
Jrom P upon the other two sides is the same for all positions of P.

384. Equations to the conic sections passing through
the tntersections of a comic and two
given straight lines.

Let §=0 be the equation to the
given conic.

Let =0 and v=0 be the equa-
tions to the two given straight lines
where

u=ax+by +c,

and v=daz+by+c.
Let the straight line % =0 meet the conic §:=0 in the
points P and R, and let v = 0 meet it in the points Q and 7.
The equation to any conic which passes through the
points P, @, R, and 7' will be of the form ) ’

VD W T (1).
For (1) is satisfied by the coordinates of any point

which lies both on §=0 and on » =0; for its coordinates
on being substituted in (1) make both its members zero.

But the points P and R are the only points which lie
both on §=0 and on u =0.

The equation (1) therefore denotes a conic passing
through P and R.

Similarly it goes through the intersections of $=0 and
v =0, .e. through the points @ and 7.
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Thus (1) represents some conic going through the four
point,s P, Q, R, and T.

so (1) represents any conic going through these four
pomts. or the quantity A may be so chosen that it shall
go through any fifth point, or to make it satisfy any fifth
condition; also five conditions completely determine a conic
section.

Ex. Find the equation to the conic which passes through the point
(1, 1) and also through the intersections of the conic
23422y +6y?- Tz -8y +6=0
with the straight lines 22—y -6=0 and 3z+y-11=0. Find also
the parabolas passing through the same points.

The equation to the required conic must by the last article be of
the form

242y +5y? - Tz -8y +6=\ (22 -y - 5) Bz +y - 11) ... (1).
This passes through the point (1, 1) if
1+246-7-8+6=\(2-1-5)(8+1-11), t.e. if A= —%.
The required equation then becomes
28 (#%+2xy +5y* - Tz - 8y +6) + 3z -y - 6) (3z+y - 11)=0,
ie. 3423 + 56y + 139y? - 233z — 218y + 223 =0,
The equation to the required parabola will also be of the form (1),
i.e.
23(1 - 6)) +zy (24N +y3(6+\) —2(7 - 8TA) — y (8 + 6)) + 6 — BEL=0.
This is a parabola (Art. 357) if (2+2)*=4(1-6)) (5+1),
ie. if A=}[-12+£4,/10].
Substituting these values in (1), we have the required equations.

385. Particular cases of the equation
8 =\uv.

I. Let =0 and v=0 intersect- on the curve, i.e. in
the figure of Art. 384 let the
points P and @ coincide.

The conic §= Auv then goes
through two coincident points
at P and therefore touches the
original conic at P as in the
figure.

II. Let %=0and v=0
coincide, so that v=u.
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In this case the point 7' also moves up to coincidence
with R and the second conic
touches the original conic at both
the points P and R.

The equation to the second
conic now becomes S=Au?

‘When a conic touches a second
conic at each of two points, the
two conics are said to have double
contact with one another.

The two conics S = Au? and S =0 therefore have double
contact with one another, the straight line » =0 passing
through the two points of contact.

As a particular case we see that if «u=0, v=0, and
w=0 be the equations to three straight lines then the
equation vw=Au® represents a conic touching the conic
vw=0 where u=0 meets it, 7.¢. it is a conic to which
v=0 and w=0 are tangents and % =0 is the chord of
contact.

III. Let u=0 be a tangent to the original conic.

In this case the two points P
and R coincide, and the conic
§'=Auv touches §=0 where u=0
touches it, and v=0 is the equa-
tion to the straight line joining
the other points of intersection of
the two conics.

If, in addition, v =0 goes
through the point of contact of » =0, we have the equation
to a conic which goes through three coincident points at P,
the point of contact of % =0; also the straight line
joining P to the other point of intersection of the two
conics is v=0.

IV. Finally, let v=0 and =0 coincide and be
tangents at P. The equation S§=Au’ now represents a
conic section passing through four coincident points at the
point where % =0 touches S =0.
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386. Line at infinity. We have shewn, in Art.
60, that the straight line, whose equation is
0.2+0.y+C=0,

is altogether at an infinite distance. This straight line is
called The Line at Infinity. Its equation may for brevity
be written in the form C'=0.

We can shew that parallel lines meet on the line at
infinity.

For the equations to any two parallel straight lines
are

Az + By+C =0 ...ccounneennniis (1),
and Az+ By+C'=0....cccuveunennnn. (2).
Now (2) may be written in the form
Aa:+By+C’+0 60(0.a:+0.y+0)=0,

and hence, by Art. 97, we see that it passes through the
intersection of (1) and the straight line

0.2+0.y+C=0.
Hence (1), (2), and the line at infinity meet in a point.

387. Geometrical meaning of the equation

where A 18 a constant, and u=0 8 the equation of a straight
lime.
The equation (1) can be written in the form
S=Mx(0.2+0.y+1),

and hence, by Art. 384, represents a conic passing through
the intersection of the conic §=0 with the straight lines

#u=0and 0.2+0.y+1=0.

Hence (1) passes through the intersection of §=0 with
the line at infinity.

Since § =0 and § =Au have the same intersections with
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the line at infinity, it follows that these two counics have
their asymptotes in the same direction.

Particular Case. Let
S=2+y*-d’,
so that S = 0 represents a circle.

Any other circle is
2+yr—29x—2fy +c=0,
t.e. Bd+y’—-a*=2zx+2fy—a®—c,

so that its equation is of the form §=Au.

It therefore follows that any two circles must be looked
upon as intersecting the line at infinity in the same two
(imaginary) points. These imaginary points are called the
Circular Points at Infinity.

388. Geometrical meaning of the equation S =\, where
A i8 @ constant.

This equation can be written in the form
S=A(0.2+0.y+1), .
and therefore, by Art. 385, has double contact with §=0
where the straight line 0.2+ 0.y + 1 =0 meets it, ¢.e. the

tangents to the two conics at the points where they meet
the line at infinity are the same.

The conics S=0 and S =A therefore have the same
(real or imaginary) asymptotes.

Particular Case. Let §=0 denote a circle. Then
8=\ (being an equation which differs from S=0 only in
its constant term) represents a concentric circle.

Two concentric circles must therefore be looked upon as
touching one another at the imaginary points where they
meet the Line at Infinity.

Two concentric circles thus have double contact at the
Circular Points at Infinity.
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EXAMPLES. XLIII

1. What is the geometrical meaning of the equations S=\. T,
and S=u?+ku, where S=0 is the equation of a conic, T'=0 is the
equation of a tangent to it, and u=0 is the equation of any straight
line ?

2. If the major axes of two conics be parallel, prove that the
four points in which they meet are concyolic.

8. Prove that in general two parabolas can be drawn to pass
through the intersections of the conics

az3+ 2hay + by?+ 292 + 2fy +¢=0
and a'z? +2hzy + b'y3+ 29’2 + 2f 'y + ¢’ =0,
and that their axes are at right angles if 4 (a’ - b) =} (a - D).

4. Through a focus of an ellipse two chords are drawn and a conic
is described to pass through their extremities, and also through the
centre of the ellipse; prove that it cuts the major axis in another fixed
point.

5. Through the extremities of a normal chord of an ellipse a
circle is drawn such that its other common chord passes through the
centre of the ellipse. Prove that the locus of the intersection of
these common chords is an ellipse similar to the given ellipse. If the
eccentricity of the given ellipse be A/2 (v/2-1), prove that the two
ellipses are equal.

6. If two rectangular hyperbolas intersect in four points 4, B, C,
and D, prove that the circles described on 4B and CD as diameters
cut one another orthogonally.

7. A circle is drawn through the centre of the rectangular
hyperbola zy=c3? to touch the curve and meet it again in two points;
prove that the locus of the feet of the perpendicular let fall from the
centre upon the common chord is the hyperbola 4zy=c32,

8. If a circle touch an ellipse and pass through its centre, prove
that the rectangle contained by the perpendiculars from the centre of
the ellipse upon the common tangent and the common chord is
constant for all points of contact.

9. From a point T whose coordinates are (z, y’) a pair of
tangents TP and TQ are drawn to the parabola y2=4az ; prove that
the line joining the other pair of points in which the circumcirele of
the triangle TPQ meets the parabola is the polar of the point
(2a ~ 2, y'), and hence that, if the circle touch the parabola, the line
PQ toucges an equal parabola.

10. Prove that the equation to the circle, having double contact
2 2
with the ellipse '12 + ¥ =1 at the ends of a latus rectum, is
a? " b
23+y?-2aed z=a?(1-e2-ef).
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11. Two ocircles have double contact with a conic, their chords of
contact being parallel. Prove that the radical axis of the two circles
is midway between the two chords of contact.

12. If a circle and an ellipse have double contact with one another,
prove that the length of the tangent drawn from any point of the
ellipse to the circle varies as the distance of that point from the
chord of contact.

13. Two conics, A and B, have double contact with a third conic
C. Prove that two of the common chords of 4 and B, and their
chords of contact with C, meet in a point.

14. Prove that the general equation to the ellipse, having double
contact with the circle z3+y*=a? and touching the axis of z at the
origin, is 323+ (a?+ ¢3) y? - 2a%cy =0.

15. A rectangular hyperbola has double contact with a fixed
central conic. If the chord of contact always passes through a fixed
point, prove that the locus of the centre of the hyperbola is a circle
passing through the centre of the fixed conic.

16. A rectangular hyperbola has double contact with a parabola ;
prove that the centre of the hyperbola and the pole of the chord of
contact are equidistant from the directrix of the parabola.

389. 70 find the equation of the pair of tangents that
can be drawn from any point (', y') to the general conic
@ (z, y) = ax® + 2hay + by® + 292 + 2fy + ¢ =0.
Let T be the given point («, ), and let P and R be the

points where the tangents from .
T touch the conic. ’

The equation to PR is there-
fore u=0,
where w= (ax' + by +g) =

+(ha + by +f)y + 92’ + Sy +c.

The equation to any conic
which touches §=0 at both of
the points P and R is

S=2xu% (Art. 385),

t.e. ax?® + 2hxy + by® + 2gx + 2fy +¢

Now the pair of straight lines 7P and T'R is a conic
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section which touches the given conic at P and R and
which also goes through the point 7.

Also we can only draw one conic to go through five
points, viz. 7, two points at P, and two points at R.

If then we find A so that (1) goes through the point 7,
it must represent the two tangents 7P and 7'R.

The equation (1) is satisfied by «’ and y’ if
ax’®+ 2ha’y’ + by + 29 + 2fy’ + ¢
= A[ax + 2ha’y’ + by'® + 292" + 2/ + ]},
. 1
t.e. if '\—cﬁ(a;', 7
The required equation (1) then becomes
$ () ¥/) [aa + Shary + by? + 2ga + 2y + o]
—[(af + hy/ +g)w + (b + by +f)y + g + /5 + T,
t.e. P(x,y)xd(x,y)=ul

where =0 is the equation to the chord of contact.

390. Director circle of a conic given by the general
equation of the second degree.

The equation to the two tangents from («/, ¥') to the
conic are, by the last article,

o' [a¢ (', ¥') — (az’ + by’ +g)’]
+ 2wy [h (o, ¥) — (o’ + by’ + g) (b’ + by’ + f)]
+ 12 [b¢ (2, ¥) - (ke + by’ +f)*] + other terms = 0...(1).
If («, ¥') be a point on the director circle of the conic,
the two tangents from it to the conic are at right angles.

Now (1) represents two straight lines at right angles if
the sum of the coefficients of * and y* in it be zero,

ie if (a+8)¢ (&, y)— (a& + by’ + g — (ha’ + by +f)*=0.
Hence the locus of the point («, ¥') is
(a + b) (ax® + 2hxy + by? + 29 + 2fy + ¢)
— (az + hy + g9)*— (hx + by + f)* =0,
t.e. the circle whose equation is
@ +9°) (ab - &) + 2 (bg — fh) + 2y (af — gh)
+o(ar)—g'=f1=0.
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Cor. If the given conic be a parabola, then ab=#
and the locus becomes a straight line, viz. the directrix of
the parabola. (Art. 211.)

801. The equation to the director circle may also be obtained in
another manner. For it is a circle, whose centre is at the centre of
the conic, and the square of whose radius is equal to the sum of the
squares of the semi-axes of the conic.

s 2 . hf-bg gh-a
The centre is, Art. 852, the point (a.b_——h” a—b__—hj;)

Also, if the equation to the conic be reduced to the form
az®+2hzy +by*+ ¢/ =0,
and if « and B be its semi-axes, we have, (Art. 364,)

1.1 a+bd 1 _ab-M
atp=_g M am="m
P —(a+d)c’
8o that, by division, a’+ﬁ’=——# .

The equation to the required circle is therefore

() sy e

_ (a+Db) (abc+2fgh—af?-bg?-ch?) -
= T (Art. 852).
392. The equation to the (imaginary) tangents drawn
Jrom the focus of a conic to touch the comic satisfies the
analytical condition for being a circle.
Take the focus of the conic as origin, and let the axis of

« be perpendicular to its directrix, so that the equation to
the latter may be written in the form # + k= 0.

The equation to the conic, ¢ being its eccentricity, is
therefore d+y=e(z+k),
e 2 (1 —-¢) +y*— 2%k — %2 == 0. )
The equation to the pair of tangents drawn from the
origin is therefore, by Art. 389,
[2* (1 =€) + 3* — 2% — 6%%%] [ €F*] = [— e%kx — R°T;,
ie. -2 (1-6) + - 28%kx— k2= — & [z + k]S,
. te. e | (1).

Here the coefficients of a* and y*® are equal and the
coefficient of xy is zero.
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However the axes and origin of coordinates be changed,
it follows, on making the substitutions of Art. 129, that in
(1) the coefficients of «? and y* will still be equal and the
coefficient of xy zero.

Hence, whatever be the conic and however its equation
may be written, the equation to the tangents from the focus
always satisfies the analytical conditions for being a circle.

393. To find the foct of the conic given by the general
equation of the second degree
\ax? + 2hay + by® + 292 + 2fy + ¢ =0

Let (', ) be a focus. By the last a,rtlcle the equation
to the pair of tangents drawn from‘it satisfies the conditions
for being a circle.

The equation to the pair of tangents is
b (2, ¥') [ax® + 2hxy + by + 292 + 2fy + ¢]
=[=(aa’ +hy' + 9) + y (ha' + by +.f) + (92 +fyf + )]
In this equation the coefficients of 2* and %* must be
equal and the coefficient of xy must be zero.

‘We therefore have [
a (&, ') — (aa' + by + g)' = b (2, y/) — (ha' + by’ +f)},
and ho (&, y)=(ax’ + hy' + g) (ke + by’ + 1),
i.e. :
(az’ +hy + g)*— (bhm' +by' +f ) _ (o + by’ + g) (ha + by +.f)
a— h

)

=¢ (@, Y)eereniinnnnnnns (4).
These equations, on being solved, give the foci.

Cor. Since the directrices are the polars of the foci,
we easily obtain their equations.

894. The equations (4) of the previous article glve, in general,
four values for 2’ and four corresponding values for y'. Two of these
would be found to be real and two imaginary.

In the case of the ellipse the two imaginary foci lie on the minor

axis. That these mngxna.ry foci exist follows from Art. 247, by
writing the standard equation in the form

ey A=ty i)
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This shews that tin:; imaginary point {0, /57— a?} is a focus, the
imaginary line y — ﬁ=0 is a directrix, and that the correspond-
-a

—

Similarly for the hyperbola, except that, in this case, the eccen-
tricity is real.

In the case of the parabola, two of the foci are at mﬁmty and are
imaginary, whilst a third is at infinity and is real.

ing eoccentricity is the imaginary quantity

898. Bx. 1. Find the focus of the parabola
1622 — 242y + 9y% — 80z — 140y +100=0.
The focus is given by the equations
(1627 — 12y’ — 40)* — ( — 127 + 9y’ — T0)2
7

_ (1627~ 12y’ - 40) (- 122"+ %' - 70)
-12

=162~ 242"y’ + 9y — 80z’ — 140y’ +100............ .
The first pair of equation (1) give :
12 (162’ — 12y’ — 40)2 + 7 (162’ = 12y’ — 40) ( - 122’ + 9y’ — 70)
-12(-122" + 9y’ - 70)2=0,
ie. {4(162 -12y - 40) 3(-122"+9y - 70)}°
x {8 (162’ — 12y’ - 40) + 4 ( - 122 + 9y’ - 70)} =0,

ie. (1002’ - 75y’ +50) x ( ~ 400)=0;
go that y= 4%"—2 .

‘We then have 16z’ - 12y’ — 40= — 48,
and -12'+ 9y’ - 70= - 64.

The second pair of equation (1) then gives

48"64_41(1&:' 12y’ - 40) + 3/ ( - 12’ + 9y’ — 70) - 402’ — 70y’ + 100
= - 482’ — 64y’ — 402 — 70y’ + 100
= - 882 - 134y’+100

e. —256=— -+ 100,

so that 2/=1, and then y'=2.
The focus is therefore the point (1, 2).
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In the case of a parabola, we may also find the equation to the
directrix, by Art. 890, and then find the coordinates of the focus,
which is the pole of the directrix.

Bx. 2. Find the foct of the conic
5522 - 30zy + 39y3 — 40z — 24y — 464 =0.
The foci are given by the equation
(562’ — 15y’ — 20)3 - (- 162’ + 3%y’ — 12)2
16

_ (552 — 15y’ — 20) (- 152’ + 39y’ ~ 13)
= i -15
=552 — 30z'y’ +3%y"? - 402’ — 24y’ — 464 ., ......... (1).
The first pair of equationg (1) gives - -
15 (552 - 16y’ — 20)3+ 16 (652" — 15y’ — 20) (- 162 + 39y’ — 12)
- 15(~ 182"+ 39y’ - 12)2=0,

i.c. {6 (862" - 15y’ - 20) - 8( - 152/ + 89y’ - 12)}
{8 (552" — 16y’ — 20) + 5 { - 152’ 4-89y’ — 12)} =0,
i.e. (62’ 8y’ - 1) (32’ + 5y’ - 4)=0.
, br'-1 _
Y T eeeeeennens (2),
~ 'k
or y'=- 3 5-1— ......................... ).

Substituting this first value of y in the second pair of equation (1),
we obtain

o5 (%,_1),:310::"-3;0;:'-'1355,
giving =2 or —1. Henoe from (2) y'=3 or -2,

On substituting the second value of y’ in the same pair of equation
(1), we finally have

93— 22’ +13=0,
the roots of which are imaginary.

‘We should thus obtain two imaginary foei which would be found
to lie on the minor axis of the conic section. The real foci are
therefore the points (2, 3) and (-1, -2).

396. Equation to the axes of the general
conic.
By Art. 393, the equation

(ax+h/.l/+g)’—§’hx+by+f)’= (aw+ky+g),(lm+by+f

_ represents some conic passing through the foci.

L. 24

~
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But, since it could be solved as a quadratic equation to

ax+hy+g

BV by +

The equation (1) therefore represents the axes of the
general conic.

397. To find the length of the straight lines drawn
through a given point in a given direction to meet a given
conic.

Let the equation to the conic be

b (% y) =ax® + 2hxy + by? + 29z + oy + =0 ...(1).

Let P be any point («, ¥'), and through it let there be
drawn a straight line at an angle 4
with the axis of z to meet the N
curve in @ and ¢'.

The coordinates of any point
on this line distant » from P
are

o +rcosd and y' +rsiné.
(Art. 86.)
If this point be on (1), we T X
have
a (&' + 7 cos 0)*+ 2k (« + v cos 0) (¥ + rsin 6) + b (4 +rsin §)®
+2g (' + 7 cos 0) + 2f (yf +rsin ) +¢=0,

it represents two straight lines.

:-;ctacos’0+ 2h cos @ sin 0 + b sin? 4]
+2r (0 +hy +g) cos 6 + (ko' + by + /) sin 0] + $ (<, ¥) = 0

For any given value of 6 this is a quadratic equatlon in
r, and therefore for any straight line drawn at an inclina-
tion @ it gives the values of PQ and P¢'.

If the two values of r given by equation (2) be of
oppomte sign, the points @ and @ lie on opposite sides
of P.

If P be on the curve, then ¢ («, ¥’) is zero and one value
of r obtained from (2) is zero.
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398. If two chords PQQ’ and PRR' be drawn in given
directions through any point P to meet the curve in @, @ and
R, R’ respectively, the ratio of the rectangle PQ.PQ’ to the
rectangle PR . PR’ i3 the same for all points, and 8 thergfore
equal to the ratio of the squares of the diameters of the conic
which are drawn wn the given directions.

The values of PQ and PQ’ are given by the equation of
the last article, and therefore

PQ. PQ = product of the roots
¢ (=, %) (1)
acos?@+ 2hcos @ sin @+ bsin?0
So, if PRR' be drawn at an angle & to the axis, we have
- ¢ (@, ¥)
PR'PR'_acos’0'+2hc050'sin0'+bsin’&""(2)'
On dividing (1) by (2), we have
PQ.PQ acos’@ +2hcos 0 sin @ + bsin® ¢’
PR.PR ™~ acos’@+2hcos@sin §+bsin?6 °

The right-hand member of this equation does not contain
o or g/, i.e. it does not depend on the position of P but only
on the directions 6 and &',

The quantity Pg ;% is therefore the same for all

positions of P.

In the particular case when P is at the centre of the
conic this ratio becomes gg: , where C is the centre and C¢’
and CR” are parallel to the two given directions.

Cor. If Q and @’ coincide, and also R and R', the two

lines PQQ’ and PRR' become the tangents from P, and the
above relation then gives

rgr _0Q” ‘e rQ _o¢’
R CR®’ “* PR CR"
Hence, If two tangents be drawn from a point to a conic,

their lengths are to one amother in the ratio of the parallel
sema-diameters of the conic.

24—2
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399. If PQQ and P\Q\Q) be two chords drawn in
parallel divections from two points P and P, to meet a conic
in Q and @', and @, and Q' respectively, then the ratio of
the rectangles PQ . PQ and P,Q,. P,Q,’ 13 independent of the
direction of the chords.

For, if P and P, be respectively the points (2, ') and
=", y" ), and 0 be the angle that each chord makes with
the axis, we have, as in the last article,

N $ (@, ¥)
PQ-PY = o0+ 2h cos O sin 0+ 6 sint 6’
- ¢(x"’y’)
and PIQ!‘PlQ‘“aom’0+2h00898in9+bsin’0’
w0 that PQ.PQ  ¢(«,¥)

PQ.PQ $(",Y)

400. If a circle and a conic section cut one another in four points,
the straight line jaining ome pair of points of intersection and the
straight line joining the other pair are equally inclined to the axis of
the conic.

For (Fig. Art. 897) let the cirele and oconic intersect in the four
poinis Q, @’ and R, R’ and let QQ’ and RR’ meet in P.
PQ.PQ _CQ"
Then PR PR = GRA (Art. 398).
But, since @, @', R, and R’ are four points on a circle, we have
PQ.PQ'=PR.PR'. [Eue, III. 36, Cor.]
N CQII RII
Also in any conic equal radii from the centre are equally inclined
to the axis of the conic.

Hence CQ” and CR”, and therefore PQQ’ and PRR’, are equally
inclined to the axis of the conie.

401. Toshcwthatanychordqfaconwwcuthar—
momically by the curve, any point on
the chord, and the polar of this point
with respect to the conic.

Take the point as origin, and let
the equation to the conic be

ax? + 2hay + by + 29+ 2fy +¢=0
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or, in polar coordinates,

72(a cos?0 + 2% cos 0 8in 0 + b sin? §) + 27 (gcos O + fsinf) +c=0,
€.
1 1 .
c.;,+2.;.(gcos€+fsm0)
+a cos? @ + 2h cos @ sin 0 + b sin?0 =0.

Hence, if the chord OPP be drawn at an angle 6 to O.X,
we have

1 1 . -
op* op ="um of the roots of this equation in

|-

~

g.00s0 +fsin g
c

Let R be a point on this chord such that

2 1 1
OE~ 0P" OP"
Then, if OR = p, we have

2 g9 08 6+ fsin 0

c

-2

P
so that the locus of R is

g.pcosf+f.psinf+c=0,
or, in Cartesian coordinates,
ge+fy+e=0.....ce.l N )R

But (2) is the polar of the origin with respect to the
conic (1), so that the locus of R is the polar of O.

The straight line PP’ is therefore cut harmonically by O
and the point in which it cuts the polar of O.

3

Bx. Through any point O is drawn a straight line to cut a conic
in P and P’ and on it is taken a point R such that OR is (1) the
arithmetic mean, and (2) the geometric mean, between OP and OP'.
Find in each case the locus of R,

Using the same notation as in the last article, we have
_ ~ gcosf+fsiné
OP+0F'=-3 acos? §+2hcos 0 gin 0+ bein?f’
c

and OF - OF = o0+ 2l oos Gsin 0% bainte"
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(1) I R be the point (p, §) we have
_ __ goos 0+ f8in 6
P=3(0P+ 0P )= - G 3hoos 6 &in 0 4 b6’
i.e. ap 008 0+ 2hp cos 0 8in 0 + bp 8in2 0+ g cos 0 + £ 8in 6=0,
i.e., in Cartesian coordinates,
az®+ 2hzy + by*+ gz + fy =0.

The locus is therefore a conic passing through O and the inter-
section of the oonic and the polar of O, i.e. through the points Z°
and T', and having its asymptotes parallel to those of the givem
conic.

(2) If R be the point (p, 6), we have in this case
[

PO O = G+ Ohoos G ain 9 b ain? 0"
i.e. ap®cos? 9+ 3hp cos 6 8in 0+ bp?sin?f=c,
i.e. ax?+2hzy +byd=c.

The locus is therefore a conic, having its centre at O and passing
through T and 7", and having its asymptotes parallel to those of the
given conic. :

403. To find the locus of the middle points of parallel chords of a
conic. [Cf. Art. 876.]

The lengths of the segments of the chord drawn through the point
sz’. y’) at an angle @ to the axis of z is given by equation (2) of Art.
97.

If («/, y’) be the middle point of the chord the roots of this
equation are equal in magnitude but opposite in sign, so that their
algebraic sum is zero.

The coeflicient of 7 in this equation is therefore zero, so that

(az’ + By’ + g) cos 0 + (hz’ + by’ + f) gin 6=0.

The locus of the middle point of chords inclined at an angle 6 to

the axis of z is therefore the straight line
(az+hy + g) + (hz+ by +f) tan 6 =0.
Henoe the locus of the middle points of chords parallel to the line

y=mz is
(az+ by +9)+ (hz+ by +f) m=0,
i.e. z(a+hm)+(h+bm)y+g+fm=0.
This is parallel to the line y=m'z if
,_ _a+hm
=" Fiom’
.. if a+h(m+m’) +dmm’=0.

This is therefore the condition that y=mx and y=m'z should be
parallel to conjugate diameters.



EXAMPLES, 375

408. Equation to the pair of tangents drawn from & given point
(z’, ¥) to a given conic. [Cf. Art. 389.]
If a straight line be drawn through (2, y’), the point P, to meet

the oonic in Q and @', the lengths of PQ and PQ’ are given by the
equation

72(a 0080+ 2hcos Osin 0+ bsin?g) -
+2r[(ax’ + Ay’ + g) 008 0 + (hz’ + by’ +f) 8in 0]+ ¢ (27, ¥’') =0.

The roots of this equation are equal, i.c. the corresponding lines
touch the conie, if

(a cos? 0+ 2h cos @ sin 0 + b 8in?6) x ¢ (2, ¥)
=[(az’+hy' +g) 008 0+ (hz’+ by’ +f) sin 077,
i.e.if (a+3htané+btan?f) x ¢ (', y')
=[(az’ + by’ + g) + (ha’ + by’ +f) tan 63 ...(1).

The roots of this equation give the corresponding directions of the
tangents through P.

Also the equation to the line through P inclined at an angle 0 to
the axis of z is

If we substitute for tan @ in (1) from (2) we shall get the equation
to the pair of tangents from P.

On substitution we have
{a(z-2)+2h(@-2)(y-y)+b (¥ -¥)} ¢ (=, )
=[(az’ + kY’ +9) (z— =) + (ha' + by’ +f) (v - ¥)P-
This equation reduces to the form of Art. 889.

EXAMPLES. XLIV.

1. Two ts are drawn to an elh;ﬁse from a point P; if the
points in which these tangents meet the axes of the ellipse be
concyclic, prove that the locus of P is a rectangular hyperbola.

2. A pair of tangents to the conmic Az3+By=1 intercept a
constant distance 2k on the axis of z ; prove that the locus of their
point of intersection is the curve

By?(d2*+ By 1)= Ak (By? - 1)%.

3. Pairs of tangents are drawn to the conic ax?+Sy?=1 8o as to
be always parallel to conjugate diameters of the conie

az?+2hry + by*=1;
shew that the locus of their point of intersection is the conic

) 20,0
az?+ 2hxy + by —a+ﬁ'
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4. Prove that the director circles of all conies which touch two
given straight lines at given points have a common radical axis.

5. A parabola circumscribes a right-angled triangle.. Taking its
sides as the axes of coordinates, prove that the locus of the foot of the
perpendicular from the right angle upon the directrix is the curve
whose equation is

2oy (a3-+4?) (hy + ke) + By + BA=0,
and that the axis is one of the family of straight lines
m3h -k
14mt’
where m is an arbitrary parameter and 24 and 2k are the sides of the
triangle.

Find the foci of the curves

6. 300z 820y + 144y3 — 1220z — 768y + 199 =0,

7. 162®-24zy +9y3+28z+ 1y + 21=0,

8. 14423 120xy + 25y + 67z — 43y +18=0,

9. 2%-62y+y?-10z - 10y —19=0 and also its directricoa.

10. Prove that the foci of the conic
'  az?+3hoy +by?=1
are given by the equations
-y a2y 1

y=mz-

11. Prove that the locus of the foci of all conics which touch the
four lines z= +a and y= = is the hyperbola 2 - y*=a?- b3,

12. Given the centre of a conic and two tangents; prove that the
locus of the foci is a hyperbola.

[Take the two tangents as axes, their inclination being w; let
(21, ¥1) and (%, y,) be the foci, and (h, k) the given centre. Then
z, +2,=2h and y, +y;=2k; also, by Art. 270 (8), we have

91Y,8in? w =22, 8in? w= (semi-minor axis)3.
From these equations, eliminating =, and y,, we have
z,8 -y *=2hz, - 24y, .]
13. A given ellipse, of semi-axes @ and b, slides between two
perpendicular lines; prove that the locus of its focus is the curve

(@ +7) (2% + D) = da%zy>.
14. Conics are drawn touching both the axes, supposed oblique, at

the same given distance a from the origin. Prove that the foci lie
either on the straight line z=y, or on the circle

22 +y3+2zy coB w=a(z+y).

15. Find the locus of the foci of conics which have a common point
and a common director circle.
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16. Find the locus of the focus of a reetangular hyperbola a
diameter of which is given in magnitude and position,

17. Through a fixed point O chords POP’ and QOQ’ are drawn at
right angles to one another to meet a given conic in P, P/, Q, and Q’.

1 1
ProvethstPO oF QO OQ,uconatmt.

18. A point is taken on the major axis of an ellipse whose abscissa
is az-- /2~ ¢2; prove that the sum of the squares of the rec:procals
of the segments of any chord through it is constant,

19. Through a fixed point O is drawn a line OPP’ to meet a conio
ian and P’; prove that the locus of a point Q on OPP/, such that
1

o@~om™ opi

920. Prove Carnot’s theorem, viz.: If a conic section cut the side
BC of a triangle ABC in the points 4’ and 4”, and, similarly, the
gide C4 in B’ and B”, and 4B in ¢’ and C”, then
BA'.BA"” .CB'.CB".,AC'. AC"=CA'.CA"” .AB' . AB"” . BC', BC".
[Use Art. 398.]

21. Obiain the equations giving the foci of the general conic by
making use of the fact that, if S be a focus and PSP’ any chord of

is the same for all direc-

is another conic whose centre is O.

the conic passing through it, then -

tions of the chord.

22. Obtain the equations for the foci also from the fact that the
product of the perpendiculars drawn from them upon any tangent is
the same for all tangents.

SP SP'

404. 7o find the equation to a conic, the axes of co-
ordinates being a tangent and normal to the conte.

Since the origin is on the curve, the equation to the
curve must be satisfied by the coordinates (0, 0) so that the
equation has no constant term and therefore is of the form

ax® + 2hacy + byt + 2gx + 2fy =
If this curve touch the axis of x at the origin, then,
when y =0, we must have a perfect square and therefore
g=0.
The required equation is therefore
ax’® + 2hay + by* + 2fy=0............... 1).

Bx. O1is any point on a conic and PQ a chord ; prove that

(1) if PQ subtend a right angle at O, it passes through a fized
point on the normal at O, and



378 COORDINATE GEOMETRY.

(2) if OP and OQ be equally inclined to the normal at O, the
PQ passes through a fized point on the tangent at 0.

Take the tangent and normal at O as axes, so that the equation to
the conio is (1).

Let the equation 0 PQbe y=mZ+C ...cc.ocervrverrnniennnnnnnnns @).
Then, by Art. 122, the equation to the lines OP and 0Q is
¢ (az3+ 3hay + by?) +3fy (y —mz)=0............... (3)-
(1) 1If the lines OP and OQ be at right angles then (Art. 66), we
have ac+be+2f=0,
%f
t.e. = - &—-I-b

=a oonstant for all positions of PQ.

gut ¢ is the intercept of PQ on the axis of y, i.e. on the normal
at O.
The straight line PQ therefore passes through a fixed point on the
normal st O which is distant ~2 from 0.

This point is often called the Frégier Point.

(2) If again OP and OQ be equally inclined to the axis of y then,
in equation (3), the coefficient of 2y must be zero, and hence

2he - 2fm =0,

i.e. f= I =oconstant.
m A

But Enf is the intercept on the axis of z of the line PQ.
. genoe, in this case, PQ passes through a fixed point on the tangent
at 0.

405. Qeneral equation to conics passing through jfour
given poinis.

Let 4, B, C, and D be the four points, and let B4 and
CD meet in 0. Take OAB
and ODC as the axes, and
let 0OA =\, 0B=X, OD=p,
and OC =y,

Let any conic passing
through the four points be
ax® + 2k xy + by*

+2g2x+2fy+c=0...(1).

If we put y=0 in this
equation the roots of the
resulting equation must be A and X,
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Hence 29=—a(A+X) and ¢=al\}
A+
By Y

Similarly b=-%,, and 2f=— Pt H
v e 4 e

z.e. a-——&, and 2g=—c¢

On substituting in (1) we have
o'’ + 2hay + Ay — pp’ A+ N)
—A\ (p+ )y + MWpp' =0...... (1),
‘where k=W &ZL—F' .
This is the required equation, 4 being a constant as yet

undetermined and depending on which of the conics through
A, B, C, and D we are considering.

406. Aliter. We have proved in Art. 383 that the
equation ¥LN = MR, k being any constant, represents any
conic circumscribing the quadrilateral formed by the four
straight lines L =0, # =0, N=0, and R =0 taken in this
order.

With the notation of the previous article the equations
to the four lines 4B, BC, CD, and DA are
y= 0, AI I -1=0, z=0,

z ﬂ_ =
and }‘+I" 1=0.

The equation to any conic circumscribing the quadri-
lateral ABCD is therefore

kay = (x ,-1)(%‘1»7-’{-1) .......... ),

m’+z7/(M + N p = EANpp) + AN'y?
—p A+ X) 2= AN (i + p) g + MWpp' = 0.

On putting A’ + A’ — kXX pp’ equal to another constant
2h we have the equation (1) of the previous article.
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407. Only one conic can be drawn through any five
pownts.

For the general equation to a conic through four points
is (1) of Art. 405.

If we wish it to pass through a fifth point, we substitute
the coordinates of this fifth point in this equation, and thus
obtain the corresponding value of . Except when three of
the five points lie on a straight line a value of % will always
be found, and only one.

Bx. Find the equation to the conic section which passes through
the five points A, B, C, D, and E, whose coordinates are (1, 2), (8, —4),
(-1,38), (-2 8),and(5 6).

The equations to 4B, BC, CD, and DA are easily found to be

y+82-6=0, 4y+72-56=0, 6xr-y+9=0, and 6z-8y+1=0,

The equation to any conic through the four points 4, B, C, and D
is therefore

(y+82—5) (62 -y +9)= A (dy + Tz~ ) (52 = 8y +1)......(1).

If this conic pass through the point E, the equation (1) must be
satisfied by the values =56 and y=6.

We thus have A=3% and, on substitution in (1), the required

equation is
2284 - 382y ~ 123y3 - 171z + 83y +350=0,
which represents & hyperbola.
408. To find the general equation to a conic section

which touches Jour given strazght lines, i.e. which t8 inscribed
in a given quadrilateral.
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Let the four straight lines form the sides of the quadri-
lateral ABCD. Let BA and CD meet in O, and take O4B
and ODC as the axes of x and y, and let the equations to
the other two sides BC and DA be

brx+my—-1=0, and Lz +my-1=0.

Let the equation to the straight line joining the points
of contact of any conic touching the axes at P and @ be

ax+by—1=0.
By Art. 385, II, the equation to the conic is then
2\zy = (axc + by — 1), (1)

The condition that the straight line BC should touch
this conic is, as in Art. 374, found to be

A=2(a-0)(0—my) . cccuiinennnnnn. (2).
Bimilarly, it will be touched by 4D if
A=2(a=0)(0—my)..cuuceeeninn. (3).

The required conic has therefore (1) as its equation, the
values of @ and b being given in terms of the quantity A by
means of (2) and (3).

Also A is any quantity we may choose. Hence we have
the system of conics touching the four given lines.

If we solve (2) and (3), we obtain
B-(mtm)  2a-(h+) [ A
O e A R

409. The conic LM =R?, where L=0, M=0, and
R =0 are the equations of straight lines.

The equation LM = 0 represents a conic, viz. two straight
lines. .

Hence, by Art. 385, II, the equation

represents a conic touching the straight lines Z =0, and
M =0, where R =0 meets them,
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Thus Z =0 and M =0 are a pair of tangents and R =0
the corresponding chord of contact.

Every point which satisfies the equations M =p’L and
R =plL clearly lies on (1).

Hence the point of intersection of the straight lines
M=p’L and R=pL lies on the conic (1) for all values of
p~ 'This point may be called the point “u.”

410. 7o find the equation to the straight line joining
two points “p” and “p'” and the equation to the tangent at
the potnt “p.”

Consider the equation

aL +bM + R=0.......cuccuueveeen. (1).

Since it is of the first degree and contains two constants
a and b, at our disposal, it can be made to represent any
straight line.

If it pass through the point “x” it must be satisfied by
the substitutions M = p’Z and R = pL.

Hence a+bp’ + =00, (2).
Similarly, if it pass through the point “u’'” we have

a+bpt+ ' =0.uiiiiiiiiennnnnns (3)-
Solving (2) and (3), we have

o _p-—1

i Bt g

On substitution in (1), the equation to the joining line is
Lpp' + M — (p+p') R=0.

By putting p'=p we have, as the equation to the
tangent at the point ““p,”

Lyu* + M—2uR =0,
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EXAMPLES. XLV.

1. Prove that the locus of the foot of the perpendicular let fall
from the origin upon tangents to the conic az?+ 2hzy + by?*=2x is the
curve (4*- ab) (z*+ 9%+ 2 (2*+y7) (bz - hy) +y*=0.

2. In the conic ax?+2hzy+by2=2y, prove that the rectangle
contained by the focal distances of the origin is ..

3. Tangents are drawn to the conic ax?+2hxry+bdy*=2z from
two points on the axis of z equidistant from the origin; prove that
their four points of intersection lie on the conis by3+ hzy==z.

If the tangents be drawn from two points on the axis of y equi-
distant from the origin, prove that the points of intersection are on a
straight line.

4, A system of conics is drawn to pass through four fixed points;
prove that

(1) the polars of a given point all pass through a fixed point,
and (2) the locus of the pole of a given line is a conic section.

5. Find the equation to the conic passing through the origin and
the points (1, 1), (-1, 1), (2, 0), and (3, —2). Determine its species.

6. Prove that the locus of the centre of all conics circumsoribing
the quadrilateral formed by the straight lines y=0, 2=0, z+y=1,
and y —z=2 is the conic 23 - 2y3+ 4y + by - 2=0.

7. Prove that the locus of the centres of all conics, which pass
through the centres of the inscribed and escribed circles of a triangle,
is the circumscribing circle of the triangle.

8. Prove that the locus of the extremities of the principal axes of
all conics, which can be described through the four points (+a, 0) and
(0, +), is the curve

wﬂ y? o 2
(5-5) @sm=a-p

9. 4, B, C, and D are four fixed points and 4B and CD meet in
O; any straight line passing through O meets 4D and BC in R and
R’ respectively, and any conic passing through the four given points
in 8 and §’; prove that

1 1

1
ortor—o0stog"

10. Prove that, in general, two parabolas can be drawn through
four points, and that either two, or none, can be drawn.

[For a parabola we have k= % \/A\uu’.]
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11. Prove that the locus of the centres of the conics circumserib-
ing a quadrilateral 4BCD (Fig. Art. 406) is a conic passing through
the vertices O, L, and M of the quadrilateral and through the middle
points of 4B, AC, AD, BC, BD, and CD.

Prove also that its asymptotes are parallel to the axes of the
parabolas through the four points.

[The required locus is obtained by eliminating % from the equa-
tions 2uu'z+2hy — up’ AN+ N')=0, and 2hz+3N\\y — A\’ (x+ ') =0.]

12. By taking the case when A\’= — uu’ and when 4B and CD
are perpendicular (in which case 4BC is a triangle having D as its
orthooentre and AL, BM, and CO are the perpendiculars on its
sides), prove that all conios passing through the vertices of a triangle
and its orthocentre are rectangular hyperbolas.

From Ex. 11 prove also that the locus of its centre is the nine
point circle of the triangle.

13. Prove thn.tﬂ:\o triangfle tl?ML (Fig. Asl;td 405) is such that each
angular point is le of the opposite side with respect to any
conic passing througﬁothe angular points 4, B, C, and D of the
quadrilateral.

[Such a triangle is called a Self Conjugate Triangle.]

14. Prove that only one rectangular hyperbola can be drawn
through four given points. Prove also that the nine point circles of
the four triangles that can be formed by four given points meet in a
point, viz., the centre of the rectangular hyperbola passing through
the four points.

15. By using the result of Art. 374, prove that in general, two
conics can be drawn through four points to touch a given straight
line.

A system of conics is inseribed in the same quadrilateral ; prove
that

16. the loous of the pole of a given straight line with respect to
this system is a straight line.

17. the locus of their centres is a straight line passing through the
middle points of the diagonals of the quadrilateral,

18. Prove that the triangle formed by the three diagonals OL,
AG, and BD (Fig. Art. 408) is such that each of its angular points is
the pole of the opposite side with respect to any conic inscribed in the
quadrilateral.

19. Prove that only one parabola can be drawn to touch any four
given lines. :
Hence prove that, if the four triangles that can be made by four
lines be drawn, the orthocentres of these four straight lines lie on a
atraight line, and their circumeircles meet in & point.



CHAPTER XVIL

MISCELLANEOUS PROPOSITIONS.

On the four normals that can be drawn from any point in
the plane of a central conic to the conic.

411. Ler the equation to the conic be
"A+ By’ =l (1.
[If 4 and B be both positive, it is an ellipse; if one be
positive and the other negative, it is a hyperbola.]
The equation to the normal at any point (', y') of the
curve is
2= _y-y
Az ~ By
If this normal pass through the given point (%, &), we
have

h—o k- y
A By
t.e. (4—B)x'y' + Bhy' — dkx’ =0 ......... 2).

This is an equation to determine the point (z, ') such
that the normal at it goes through the point (4, k). It
shews that the point («, y') lies on the rectangular hyper-
bola

(Ad-B)axy+Bhy— Akx=0............(3).
The point (2, ¥') is therefore both on the curve (3) and
on the curve (1). Also these two conics intersect in four
points, real or imaginary. There are therefore four points,

L. 25
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in general, lying on (1), such that the normals at them pass
through the given point (&, k).

Also the hyperbola (3) passes through the origin and
the point (A, k) and its asymptotes are parallel to the axes.

Hence From a given point four normals can in general
be drawn to a given central conic, and their feet all lie on a
certain rectangular hyperbola, which passes through the
given point and the centre of the conic, and has its asymptotes
parallel to the axes of the given conic.

412, 7o find the conditions that the normals at the
points where two given straight lines meet a central conic
may meet in & point.

Let the conic be

AP + By =1 coeennnenniinnnnnns (1),
and let the normals to it at the points where it is met by
the straight lines

he+my=1....coooeiiiinii. 2),
and o lptmg=1.iie. (3)

meet in the point (4, k).
By Art. 384, the equation to any conic passing through
the intersection of (1) with (2) and (3) is
A2+ By* - 1 + X (b + myy — 1) (L + mgy — 1) = 0...(4).
Since these intersections are the feet of the four
normals drawn from (4, k), then, by the last article, the
conic
(4—B)ay + Bhy — Akx=0 ............ (5)
passes through the same four points.
For some value of A it therefore follows that (4) and (5)
are the same.

Comparing these equations, we have, since the co-
efficients of a* and 3? and the constant term in (5) are all
zero

" A+NL=0, B+Ammyg=0, and —1 +A=0.

Therefore A =1, and hence

Ll,=- A4, and m,m,:—-B........._...(G).
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The relations (6) are the required conditions.

Also, comparing the remaining coefficients in (4) and (5),
we have ’

A (b + lam) _ My +b) =\ (my 4 )

A-B - Ak Bh ’
__A4—-B my+m,
so that h= B g+ L, M),
A-B L+,
and b — 1 8
T g+ lm, ©

Cor. 1. If the given conic be an ellipse, we have

1 1
A=;, and B=IT"

The relations (6) then give

and the coordinates of the point of concurrence are

2 __ A2 - 2
pZ B mkms g gy, 10w

a®  lm,+1m, ANl
_a= L+l o gy 1-a®
and k= T =~ ™ (@ =8 G

Cor. 2. If the equations to the straight lines be given
in the form y=mx+c¢ and y=m'z + ¢, we have

m:—"%, c=;’1—‘1, nz’:—r%, and ¢ =—:
2
The relations (9) then give
b’
mm’:a—, and ¢c¢’ = —b%

418. If the normals at four points P, Q, R, and S of an ellipse
meet in a point, the sum of their eccentric angles is equal to an odd
multiple of two right angles. [Cf. Art. 293.]

25—2
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If a, B, v, and 3 be the ecoentric angles of the four points, the
equations to PQ and RS are

. a-8
= - _b. ta_'_+_ﬁ+bcos 2
y=-=. 3 T atB’
2
-0
boos L °
_ = _z.cot 7S 2
and y-—z.acot ) +—.-7—+6—. [A.l‘t.259-]
g

Since the normals at these points meet in a point, we have, by
Art, 412, Cor. 2,

B VLB v+l

a3 2 2

i.e. a+B+y+d=@2n+1)r.

414. Bx. 1. If the normals at the points 4, B, C, and D of an
ellipse meet in a point O, prove that SA.SB.SC. SD=N3. S03, where
S is one of the foci and \ is a constant.

Let the equation to the ellipse be

and let O be the point (A, k).
As in Art. 411, the feet of the normals drawn from O lie on the

hyperbola
1 1 h kz
(=) v+ 3 - =0

i.e. a3y =a%hy — VKT ..ouieiiiiniinanen (2).

The coordinates of the points 4, B, C, and D are therefore found
by solving (1) and (2),
bz

From (2) we have y= Fh-em)
Substituting in (1) and simplifying, we obtain
zta’e! - 2hale?s3 + 23 (a?h® + VK2 — a'e) + 2helats - ath?=0...(3).
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If z,, z,, x5, and z, be the roots of this equation, we have (Art. 2),

2h a?h?+ b3 — a'et
= Tm= e
2ha? a3h?
2@y = ——y, 8nd 22T = - —.

If S be'the point (— ae, 0) we have, by Art. 251,
SdA=a+ex,.
~. S4.8B.8C.SD=(a+ex,)(a+ ex;) (a+ex;) (a+exy)
=a'+ a’eZz, + a?e?Zx, 2y + a3 Zx, T2y + 43, Tex T,
= :L: {(h+ ae)®+k?}, on substitution and simplifieation,
»?

= F . Sozl
Aliter. If pstand for one of the quantities S4, SB, SC, or SD
we have p=a+ez,
. 1
i.e. z=2 (p-a).

Substituting this value in (3) we obtain an equation in the fourth
degree, and easily have

psoipi= Spl(h+ac)i+ ), a8 before.

Bx. 2. If the normals at four points P, Q, R, and S of a central
comic meet in a point, and if PQ pass through a fized point, find the
locus of the middle point of RS.

Let the equation to PQ be

and that to RS Y=MgT+Cq vovvvinrrnnnrnennnieenreneennee 2).

If the equation to the given conic be 423+ By?=1, we then have
(by Art. 412, Cor. 2)

mymy = ;—; ................................. (8),

and €y Cq= -% ................................. (4).
If (f, g) be the fixed point through which PQ passes, we have

I=MfHC) cerirnininiirecnieneceisnnnn (5)-

Now the middle point of RS lies on the diameter conjugate to it,
i.e. by Art. 376, on the diameter

= —B"l;x
i.e., by (3), y=-mzx
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Now, from (4) and (5),
1
Co= = oo
T Blg-fm)’
so that, by (3), the equation to RS is
1

A
y= mz - B (g fml) ........................

Eliminating m, between (6) and (7), we easily have, as the equation
to the required locus,

(4=*+ By?) (92 + fy) + zy =0.

Cor. From equation tgi) it follows that the diameter conjugate to
RS is equally inclined with PQ to the axis, and hence that the points
P and @ and the ends of the diameter conjugate to RS are concyclic
(Art. 400).

EXAMPLES. XLVL

1. If the sum of the squares of the four normals drawn from s
point O to an ellipse be constant, prove that the locus of O is a conic.

2. If the sum of the reciprocals of the distances from a focus of
the feet of the four normals drawn from a point O to an ellipse be
lat <ot * PYOve that the locus of O is a parabola passing through that
focua

8. If four normals be drawn from a point O to an ellipse and if
the sum of the squares of the reciprocals of perpendiculars from the
centre upon the tangents drawn at their feet be oonatant prove that
the locus of O is a hyperbola.

4, The normals at four points of an ellipse are concurrent and
they meet the major axis in G,, G;, G4, and G,; prove that

1 1 1 1 4
+

cq,t¢q,* ca,* cq,~ Carca,+ 0G0,

5. If the normals to a central conic at four points L, M, N, and
P be concurrent, and if the circle through L, M, and N meet the curve
again in P/, prove that PP’ is a diameter.

6. Shew that the locus of the foci of the rectangular hyperbolas
which pass through the four points in which the normals drawn from
any point on & given straight line meet an ellipse is a pair of conics.

7. If the normals at points of an ellipse, whose eccentric angles
are a, 8, and v, meet in a point, prove that

sin (8 +%) +sin (y +a) + sin (a + 8) =0.
Hence, by bp;ge 235, Ex. 15, shew that if PQR be a maximum

triangle inscri in an ellipse, the normals at P, Q, and R are
concurrent.
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8. Prove that the normals at the pomts where the straight line
x

= =y
@ cosa ™ b_gin— 1 meets the ellipse — + ;5 =1 meet at the point
(-ossore, Fente).
9. Prove that the loci of the point of intersection of normals at

the ends of focal chords of an ellipse are the two ellipses
a?yd (1+€3)3+ b3 (z = ae) (zac®)=0.
3
10. ngents to the ellipse f,+g,——1 are drawn from any point
on the elhpse _4 prove that the normals at the points of
contact meet on tha elhpse a322 + biy2=} (a2 - D)3,
11. Any t’angent to the rectangular hyperbola 4zy=ab meets the

ellipse ‘—'—,+%,—=1 in the points P and Q; prove that the normals at P

and @ meet on & fixed diameter.
12. Chords of an ellipse meet the major axis in the point whose

distance from the centre is a \/ b ; prove that the normals at its
ends meet on a circle.

13. From any point on the normal to the ellipse at the point
whose eccentric angle is a two other normals are drawn to it; prove

that the locus of the point of intersection of the corresponding
tangents is the curve

2y + bxsina+aycosa=0.

14. Shew that the locus of the intersection of two perpendicular
normals to an ellipse is the curve

(04 58) (23447 (% + PP = (a2 - D9 (a2 - b2,

15. ABGmatrmnglemsmbedmtheellipsex:+ =1 having

each side parallel to the tangent at the opposite angular pomt prove
that the normals at 4, B, and C meet at a point which lies on the
ellipse e+ =1 (@~ b)L,

16. The normals at four points of an ellipse meet in a point (&, k).
Find the equations of the axes of the two parabolas which pass
through the four points., Prove that the angle between them is
2tan-l; and that they are parallel to one or other of the equi-con-
jugates of the ellipse.
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17. Prove that the oentre of mean position of the four points on
the ellipse :c:+ =1, the normals at which pass through the poin

(a, B), i8 the pomt
a’a 538
(*a’-bﬂ' “iam)

18. Prove that the product of the three normals drawn from any
point to a parabola, divided by the product of the two tangents from
the same point, is equal to one quarter of the latus rectum.

19. Prove that the conic 2aky=(2a - h)y?+4az?. intersects the
paml))ols y2=4az at the feet of the normals drawn to it from the point
(h, k

20. From a point (A, k) four normals are drawn to the rec
hyperbola zy=c?; prove that the centre of mean position of their feet
is the point 2, ; , and that the four feet are such that each is the

orthocentre of the triangle formed by the éther three.

Confocal Conics.

415, Def. Two conics are said to be confocal when
they have both foci common.
To find the equation to conics which are confocal with
the ellipse
a:’
:Z: Lo (1).

All conics having the same foci have the same centre
and axes.

The equation to any conic having the same centre and
axes as the given conic is

The foci of (1) are at the points (=+/a’— 52, 0).
The foci of (2) are at the points (= JA B, 0).
These foci are the same if
A—-B=a?-0?,
2.e. if A — a® = B — 0= A (say).
wAd=a?+ A, and B=5b+A
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The equation (2) then becomes

o y
FAA T D

which is therefore the required equation, the quantity A

determining the particular confocal.

416. For different values of A\ to trace the conic given
by the equation *

First, let A be very great; then a?+ A and °+ A are
both very great and, the greater that A is, the more nearly .
do these quantities approach to equality. A circle of
infinitely great radius is therefore a confocal of the
system.

Let A gradually decrease from infinity to zero; the
semi-major axis a/a®+ A gradually decreases from infinity
" to a, and the semi-minor axis from infinity to 6. When A
is positive, the equation (1) therefore represents an ellipse
gradually decreasing in size from an infinite circle to
the standard ellipse
Z Lol

a” b

This latter ellipse is marked 7 in the figure.

Next, let A gradually decrease from 0 to —&%. The
semi-major axis decreases from a to »/a®— &%, and the semi-
minor axis from & to 0.

For these values of A the confocal is still an ellipse,
which always lies within the ellipse J; it gradually
decreases in size until, when A is a quantity very slightly
greater than —%? it is an extremely narrow ellipse very
nearly coinciding.with the line SZ, which joins the two
foci of all curves of the system.

Next, let A be less than —5?; the semi-minor axis
A/8% + X now becomes imaginary and the curve is a hyper-
bola ; when A is very slightly less than — 0% the curve is a
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- hyperbola very nearly coinciding with the straight lines
SX and HX'.

[As A passes through the value — &? it will be noted that
the confocal instantaneously changes from the line-ellipse
SH to the line-hyperbola SX and HX'.]

As X gets less and less, the semi-transverse axis v/a?+A
becomes less and less, so that the ends of the transverse
axis of the hyperbola gradually approach to C, and the
hyperbola widens out as in the figure.

‘When A =—a?% the transverse axis of the hyperbola
vanishes, and the hyperbola degenerates into the infinite
double line YOY".

‘When A is less than — a? both semi-axes of the conic
become imaginary, and therefore the confocal becomes
wholly imaginary.

417, Through any point in the plame of a given conic
there can be drawn two conics confocal with it; also one of
these 18 an ellipse and the other a hyperbola.

Let the equation to the given conic be
y_

i 1,
and let the given point be ( £ 9)
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Any conic confocal with the given conic is

«? ¥y
IR i | S, (1).
If this go through the point (£, g), we have
S 9 _
eyt et 1o, 2).

This is a quadratic equation to determine A and there-
fore gives two values of A.

Put 5* + A =p, and hence
A +A=p+a®—b*=p+a’d
The equation (2) then becomes

—f—"‘,‘ +y’=l
p.+ae 73
ie. P+ p(ade—f - @) —gfat? =0 ......... (3).

On applying the criterion of Art. 1 we at once see that
the roots of this equation are both real.

Also, since its last term is negative, the product of
these roots is negative, and therefore one value of p is
positive and the other is negative.

The two values of %+ A\ are therefore one positive and
the other negative. Similarly, the two values of a* + A can
be shewn to be both positive.

On substituting in (2) we thus obtain an ellipse and a
hyperbola.

418. Confocal conics cut at right angles.

Let the confocals be
z? y? ? ¥y
ax s bt e ey,

and let them meet at the point (z, ').
The equations to the tangents at this point are

oy oy
a‘-’+)\l+b’+)tl*1’ d a’+)L,+b”+}\2 !
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These cut at right angles if (Art 69)
22 " o
@Ry @ny FER)Eeny 0 O
But, since (2, %) is a common point of the two confocals,
we have
x’ﬂ y'ﬂ _ m’? y'ﬂ _
arn TEan b o Gt EaT
By subtraction, we have

1 1 1 1
'3 _ _ —
z (a’+)tl a’+A1> ’-'-"/’(b’+)«.l b’+}\,) o
? y'*
@@ Th) + TFin) )«;) =0...... (2).
The condition (1) is therefore satisfied and hence the
two confocals cut at right angles.

Cor. From equation (2) it is clear that the quantities
b+ A, and 3 + A, have opposite signs; for otherwise we
should have the sum of two positive quantities equal to
zero. 'Two confocals, therefore, which intersect, are one an
ellipse and the other a hyperbola.

s.c.

419. One conic and only one conic, confocal with the conic

3 o2
;i, + %—,:1, can be drawn to touch a given straight line.
Let the equation to the given straight line be
TcoBa+yBiNa=D....cccvviennnininnnnnnna. ).
Any confocal of the system is
23 ¥
a,_”‘ Pn= =1 e (2).
The straight line (1) touches (2) if
23=(a3+\) cos?a + (b%+\) sind a (Art. 264),
i.e if A=p?-alcos?a - b?sinta.

This only gives one value for A and therefore there is only one
conio of the form (2) which touches the straight line (1).

Also N+ a?=p?+ (a®-b?) sin2a=a real quantity. The conic is
therefore real.
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EXAMPLES. XLVIL

1. Prove that the difference of the squares of the perpendiculars
drawn from the centre upon parallel tangents to two given confocal
conics is constant.

2. Prove that the equation to the hyperbola drawn through the
point of the ellipse, whose eccentrioc angle is a, and which is confocal
with the ellipse, is . .

Y
oosia  sinta b

3. Provethat the locus of the points lying on a system of oconfocal
ellipses, which have the same eccentric angle a, is & confocal hyperbola
whose asymptotes are inclined at an angle 2a.

4, Bhew that the locus of the point of contact of tangents drawn
trom a given mnt to a system of confocal conics i8 a cubic curve,
ugh the given point and the foci.

If the given point be on the major axis, prove that the cubic
reduces to a circle.

5. Prove that the locus of the feet of the normals drawn from a
fixed point to a series of confocals is a cubic curve which passes
ug the given point and the foci of the confocals.

6. A point P is taken on the conic whose equation is
23 y? 1
PEES I S
such that the normal at it passes through a fixed point (A, k) ; prove
that P lies on the curve
z Yy _a-v
Y-k z-h hy—kz’
7. Two tangents at right angles to one another are drawn from
& point P, one to each of two confocal ellipses; prove that P lies on

a fixed circle. Shew also that the line joining the points of contact is
bisected by the line joining P to the common centre.

8. From a given point & pair of tangents is drawn to each of a
given system of confocals; prove that the normals at the points of
contact meet on a straight line.

9. Tangents are drawn to the parabola y?=4z./a?- 0%, and on
each is taken the point at which it touches one of the confocals
3 y’
I
prove that the locus of such points is a straight line,
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10. Normals are drawn from a given point to each of a system of
confocal conics, and tangents at the feet of these normals; prove that
the locus of the middle points of the portions of these tangents
intercepted between the axes of the confocals is a straight line.

11. Prove that the locus of the pole of a given straight line with
respect to a series of confocals is a straight line which is the normal
to that confocal which the straight line touches.

12. A series of parallel tangents is drawn to a system of confocal
conics; prove that the locus of the points of contact is a rectangular
hyperbola.

Shew also that the locus of the vertices of these rectangular
hyperbolas, for different directions of the tangents, is the curve
7r3=c3co820, where 2¢ is the distance between the foci of the
confocals.

13. The locus of the pole of any tangent to a confocal with respect
to any circle, whose centre is one of the foci, is obtained and found to
be a circle; prove that, if the circle corresponding to each confocal be
taken, they are all coaxal.

14. Prove that the two conics
ax?+2hzy +by?=1 and a'z3+2h'zy + Vy=1
can be placed so as to be confocal, if
(a-DP+4R3 (/- bP+4R7
(@-k)F = @V -h3

Curvature.

420. Circle of Curvature. Def. If 7, Q, and R
be any three points on a conic section, one circle and only
one circle can be drawn to pass through them. Also this
circle is completely determined by the three points.

Let now the points @ and & move up to, and ultimately
coincide with, the point P; then the limiting position of
the above circle is called the circle of curvature at P; also
the radius of this circle is called the radius of curvature at
P, and its centre is called the centre of curvature at P.

421, Since the circle of curvature at P meets the
conic in three coincident points at 2, it will cut the curve
in one other point 7. The line PP’ which is the line
joining P to the other point of intersection of the conic and
the circle of curvature is called the common chord of
curvature.
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‘We shewed, in Art. 400, that, if a circle and a conic
intersect in four points, the line joining one pair of points
of intersection and the line joining the other pair are
equally inclined to the axis. In our case, one pair of
points is two of the coincident points at P, and the line
joining them therefore the tangent at P ; the other pair of
points is the third point at P and the point P’, and the
line joining them the chord of curvature PP'. Hence the
tamgent at P and the chord of curvature PP' are, in any
conic, equally inclined to the axis.

422. 7o find the equation to the circle of curvature and
the length of the radius of curvature at any point (at’, 2at)
of the parabola y* = 4ax.

If §=0 be the equation to a conic, 77=0 the equation
to the tangent at the point P, whose coordinates are as*and
2at, and L=0 the equation to any straight line passing
through P, we know, by Art. 384, that S+A. L. 7=0 is
the equation to the conic section passing through three

coincident points at P and through the other point in which
L =0 meets §=0.

If A and Z be so chosen that this conicis a circle, it will
be the circle of curvature at P, and, by the last article, we

know that L =0 will be equally inclined to the axis with
T=0.

In the case of a parabola
S=y*—dar, and T=ty—x—at’. (Art. 229.)

Also the equation to a line through (af’ 2af) equally
inclined with 77=0 to the axis is

t(y — 2at) + x— at’=0,
so that L=ty+x-3at’
The equation to the circle of curvature is therefore

y:—4dax + A (ty — x — af®) (ty + x — 3at®) =0,

) . 1
where 1+ A==, z.e.)t——-l—_*_—te.
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On substituting this value of A, we have, as the required
equation,
@+ y*— 2ax (36 + 2) + days® — 3a’* =0,
i.e. [#=a (2 +3)] + [y + 28T = 4a® (1 + £2)%.
The circle of curvature has therefore its centre at
the point (2a + 3a#’, —2af®) and its radius equal to

2a (1 + )
Cor. If S be the focus, we have SP equal to a + af?, so
that the radius of curvature is equal to 2 :\7:), .

423. To find the equation to the circle of curvature at
the point P(acos ¢, bsin ¢) of the ellipse ;:+yb;=l.
The tangent at the point P is
) x Y .o
Ecostb + Zsmqs— 1.

The straight line passing through P and equally inclined
with this line to the axis is

P (o —a 008 )~ 22 (y _ b sin )=,
e zoos¢—%sin¢—cos2¢=0.

The equation to the circle of curvature is therefore of
the form

2 oy x Y.
;2+-b«,—1+)\[(—lcos¢+zsm¢—l]

[gcos¢—%sin¢—cos2¢]=0 ...... Q).

Since it is a circle, the coefficients of #* and y? must be
equal, so that
1 cos? 1 sin®
a ”‘_aﬂj: B ‘bﬂi‘
a?—b?

and therefore A= b,;m .
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On substitution in (1), the equation to the circle of
curvature is

(5? cos? @ + a® sin? ¢p) (w, :Z: - 1)
+ (a3 =0 [;, cos® ¢ — ¥, sint ¢ 8P (1 + cos 29)
AL

(1 —cos 2¢) + cos 2¢:| =0,
z.e. 2+ y’ _ (ai_ bg) [233 0288 ¢ _ 2y sinﬂ ¢]

+ a® (cos® ¢ — 2 sin? @) — b2 (2 cos? ¢ — sin? ¢) =0.
The equation to the circle of curvature is then

{a: _e ; i cos? qS}n {y + - 7)2 sin® ¢}2

= (a* — b%)? {cos L Bu;' ¢} a?{cos® ¢ — 2 sin? ¢}

+56%{2 cos? ¢ — sin? P}
, after some reduction.

(a®sin? ¢ + b cos® ¢)°
- a?b?
The centre is therefore the point whose coordinates are
a®?-b* a’—b . . s
( oo ¢, — 5 s ¢) and whose radius is
(a? sin® ¢ + b2 cos? @)}
3 .

Cor. 1. If CD be the semi-diameter which is conju-
gate to CP, then D is the point (90° + ¢), so that its
coordinates are —asin ¢ and bcos¢. (Art. 285.)

Hence CD?= a?sin’® ¢ + b cos® ¢,

coD®

and therefore the radius of curvature p = =

Cor. 2. If the point P have as coordinates 2 and y

then, since «’=a cos ¢ and y’ = b sin ¢, the equation to the
circle of curvature is

bﬂ 2 aﬂ___b’ , a2+bﬂ_x’ﬂ_ ’2\3
(a:—-;—m>+(y+ B y“) _ g y)

L. 26
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Cor. 3. Inasimilar manner it may be shewn that the
equation to the circle of curvature at any point (', y') of

o .

the hyperbola a—,-—‘g;’zl is
a® + b® 9 a+5 .\ a’—b’—x”—y")’
(o= + (v ey = T
(@ +y"—a"+ %
B a’h? ’

424. If a circle and an ellipse intersect in four points,
the sum of their eccentric angles is equal to an even
multiple of =. [Page 235, Ex. 18.]

If then the circle of curvature at a point P, whose
eccentric angle is 6, meet the curve again in @, whose
eccentric angle is ¢, three of these four points coincide at
P, 50 that three of these eccentric angles are equal to §,
whilst the fourth is equal to ¢. 'We therefore have

30 + ¢ = an even multiple of 7= = 2na.
Hence, if ¢ be supposed given, i.e. if @ be given, we

have 6= 2“’;— ¢ .

Giving n in succession the values 1, 2, and 3, we see
that 6 equals 2‘”3_‘#, ir—¢ or 61r_¢.

3 3
Hence the circles of curvature at the points, whose
eccentric angles are 2‘”3_ 4’, 4‘”; 4’, and 6‘"3_ 4’, all

pass through the point whose eccentric angle is ¢.

Also since
2‘";‘# + 4‘”;4’ + 6"3_4’+ ¢ = 4 = an even multiple of =,
we see that the points 2";4’, 41‘-3—‘#, 6”;#’, and ¢

all lie on a circle.
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Hence through any point Q on an ellipse can be drawn
three circles which are the circles of curvature at three
pownts Py, P,, and P;. Also the four points P,, P,, Py, and
Q all lie on another circle.

425. Evolute of a Curve. The locus of the
centres of curvature at different points of a curve is called
the evolute of the curve.

426. ZEvolute of the parabola 3= 4ax.
Let (&, 7) be the centre of curvature at the point (a#?, 2at)
of this curve.
Then £=a (2 +3¢") and g =—2as’. (Art. 422.)
. (8- 2a)’= 270’ = 3" azf,
.e. the locus of the centre of curvature is the curve

27ay® =4 (x — 2a)’.

This curve meets the axis of = in the point (2a, 0).

It also meets the parabola
where

2Ta’x = (x— 2a)’,
t.e. where z=8a,
and therefore
y==4,/2a.

Hence it meets the parabola at

the points
(8a, =4,/2a).

The curve is called a semi-
cubical parabola and could be shewn
to be of the shape of the dotted curve in the figure.

427. Ewvolute of the ellipse f +7 e =1
If (%, 7) be the centre of curva.ture corresponding to the
point (a cos ¢, b sin ¢) of, the ellipse, we have

a?—

&=

2_ 22
bﬂcosad: and 3]:—“ b sin® ¢.

b
26—2
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Hence :
(@a)? + (b9)'= (a - ) {cos® b + sin® ¢} = (a*— B}
Hence the locus of the point (&, ) is the curve
(an)! + (b9)* =(a- )"
This curve could be shewn to
be of the shape shewn in the figure

where
a? - b

CL=CL = ,
a

a® - b?

T

The equation to the evolute of
the hyperbola would be found to

be
(az)t — (by)} = (a* + b)Y,

428. Contact of different orders. If two conics,
or curves, touch, ¢.e. have two coincident points in common
they are said to have contact of the first order. The
tangent to a conic therefore has contact of the first order
with it. :

If two conics have three coincident points in common,
they are said to have contact of the second order. The
circle of curvature of a conic therefore has contact of the
second order with it.

and CM=CM'=

If two conics have four coincident points in common,
they are said to have contact of the third order. No
conics, which are not coincident, can have more than four
coincident points; for a conic is completely determined if
five points on it be given. Contact of the third order is
therefore all that two conics can have, and then they are
said to osculate one another.

Since a circle is completely determined when three
points on it are given we cannot, in general, obtain a circle
to have contact of a higher order than the second with a
given conic. The circle of curvature is therefore often called
the osculating circle.
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In general, one curve osculates another when it has the
highest possible order of contact with the second curve.

429. Equation to a conic osculating another conic.

If S=0 be the equation to a conic and 7'=0 the
tangent at any point of it, the conic § = A7"* passes through
four coincident points of =0 at the point where 7'=0
touches it. (Art. 385, IV.)

Hence §'=AT" is the equation to the required osculating
conic.

Bx. The equation of any conic osculating the conio
az3+ 3hay + by3 = 3fY=0...cooevrreerenrnen. )
aa?+ Bhay +by? - 2y +My?=0
For the tangent to (1) at the origin is y=0.
If (2) be a parabola, we have k2=a (b+\), so that its equation is
(az + hy)2=2afy.

If (2) be a rectangular hyperbola, we have a+b+A=0, and the
equation to the osculating rectangular hyperbola is

a(z- y7) + 2hay - 2fy =0.

at the origin is

EXAMPLES. XLVIIL

1. If the normal at a point P of a parabola meet the directrix in
L, prove that the radius of curvature at P is equal to 3PL.

2. If p, and p, be the radii of curvature at the ends of a focal
chord of the parabola, prove that
pdepi=(20)71
3. PQ is the common chord of the parabola and its circle of
curvature at P; prove that the ordinate of Q is three times that of P,
and that the locus of the middle point of PQ is another parabola.

4, If p and p’ be the radii of curvature at the ends, P and D, of
conjugate diameters of the ellipse, prove that

A I L
(@b}’
and that the locus of the middle point of the line joining the centres
of curvature at P and D is

(az + by)d + (az - by)d= (a2~ b2)3,
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5, Ois the centre of curvature at any point of an ellipse, and Q
and R are the feet of the other normals drawn from O; prove that the

3 3
locus of the intersection of tangents at Q and R is :—,+:—,_,=1, and
that the line QR is a normal to the ellipse
EN
a?’ B (a?-0%)2
6. If four normals be drawn to an ellipse from any point on the

evolute, prove that the locus of the centre of the rectangular hyperbola
through their feet is the curve

&)

7. In general, prove that there are six points on an ellipse the
circles of curvature at which pass through a given point O, not on the
ellipse. If O be on the ellipse, why is the number of circles of
curvature passing through it only four?

8. The circles of curvature at three points of an ellipse meet in a
point P on the curve. Prove that (1) the normals at these three
points meet on the normal drawn at the other end of the diameter
through P, and (2) the locus of these points of intersection for
different positions of P is the ellipse

4 (a2 + b%y?) = (a3 - %)%

9. Prove that the equation to the circle of curvature at any point
(z', ¥') of the rectangular hyperbola z2-y?=a? is

a?(z?+ y?) — 4z + dyy"* + 3a3 (22 + y'?) =0.

10. Shew that the equation to the chord of curvature of the
rectangular hyperbola zy=c? at the point “¢” is ty+t3x=c(1+¢),
and that the centre of curvature is the point
14+3¢4 3+t4)

2w ' ‘o
Prove also that the locus of the pole of the chord of curvature is
the curve r2=2¢3sin 26.

11. PQ is the normal at any point of a rectangular hyperbola and
meets the carve again in Q; the diameter through Q meets the curve
again in R ; shew that PR is the chord of curvature at P, and that
PQ is equal to the diameter of curvature at P.

12. Prove that the equation to the circle of curvature of the conic
ax?+ 2hxy + by3=2y at the origin is
a(2?+y?)=2y.
13. If two confocal conics intersect, prove that the centre of

curvature of either curve at a point of intersection is the pole of the
tangent at that point with regard to the other curve.

c
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14. Shew that the equation to the parabola, having contact of the
third order with the rectangular hyperbola zy=c? at the point

[
(= 3)

is (z —yt?)3 ~ det (z +yt*) + 8c%3=0.
Prove also that its directrix bisects, and is perpendicular to, the
radius vector of the hyperbola from the centre to the point of contact.

15. Prove that the equation to the parabola, which passes through
the origin and has contact of the second order with the parabola
y2=4az at the point (at?, 2at), is

(4z - 3ty)? +4at? (3z - 2ty) =0.

16. Prove that the equation to the rectangular hyperbola, having
contact of the third order with the parabola y2=4az at the, point
(at3, 2at), is

23 - 2tzy — y? + 2az (2 + 3t2) — 2atdy + a4 =0.
Prove also that the locus of the centres of these hyperbolas is an

equal parabola having the same axis and directrix as the original
parabola.

17. Through every point of a circle is drawn the rectangular
hyperbola of closest contact; prove that the centres of all these
hyperbolas lie on a concentric circle of twice its radius.

18. A rectangular héyper?ola is drawn to have contact of the third
order with the ellipse z_ﬂ + %2_1; find its equation and prove that the

locus of its centre is the curve
(_,,2 +y2\2_a?  y?

a?+ 1) TaiT B’

Envelopes.

430. Consider any point P on a circle whose centre
is O and whose radius is a@. The straight line through P
at right angles to OP is a tangent to the circle at P.
Conversely, if through O we draw any straight line OP of
length @, and if through the end P we draw a straight
line perpendicular to OP, this latter straight line touches,
~or envelopes, a circle of radius ¢ and centre O, and this
circle is said to be the envelope of the straight lines drawn
in this manner.

Again, if § be the focus of a parabola, and PY be the
tangent at any point P of it meeting the tangent at the
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vertex in the point ¥, then we know (Art. 211, 3) that
SYP is a right angle. Conversely, if § be joined to any
point ¥ on a given line, and a straight line be drawn
through Y perpendicular to SY, this line, so drawn, always
touches, or envelopes, a parabola whose focus is § and such
that the given line is the tangent at its vertex.

431. Envelope. Def. The curve which is touched
by each of a series of lines, which are all drawn to satisfy
some given condition, is called the Envelope of these
lines.

As an example, consider the series of straight lines
which are drawn so that each of them cuts off from a pair
of fixed straight lines a triangle of constant area.

We know (Art. 330} that any tangent to a hyperbola
always cuts off a triangle of constant area from its asymp-
totes.

Conversely, we conclude that, if a variable straight line
cut off a constant area from two given straight lines, it
always touches a hyperbola whose asymptotes are the two
given straight lines, 7.e. that its envelope is & hyperbola.

432. If the equation to any curve involve a variable
parameter, in the first degree only, the curve always passes
through a fixed point or points.

For if A be the variable parameter, the equation to the
curve can be written in the form §+AS'=0, and this
equation is always satisfied by the points which satisfy
S8=0 and §'=0, i.e the curve always passes through the
point, or points, of intersection of §=0 and §’=0 [compare
Art. 97].

433. Curve touched by a variable straight line whose
equation involves, in the second degree, a variable parameter.
As an example, let us find the envelope of the straight
lines given by the equation
me—my+a=0...cceiiinnn. (1),
where m is a quantity which, by its variation, gives the
series of straight lines.
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If (1) pass through the fixed point (A, k), we have
mh—mk+a=0............ N (2).

This is an equation giving the values of m correspond-
ing to the straight lines of the series which pass through
the point (4, k). There can therefore be drawn two
straight lines from (%, &) to touch the required envelope.

As (h, k) moves nearer and nearer to the required
envelope these two tangents approach more and more
nearly to coincidence, until, when (%, k) is taken on the
envelope, the two tangents coincide.

Conversely, if the two tangents given by (2) coincide,
the point (A, £) lies on the envelope.

Now the roots of (2) are equal if 4* = 4ah,
so that the locus of (A, k), .e. the required envelope, is the
parabola 3* = 4az.

Hence, more simply, the envelope of the straight line (1)
is the curve whose equation is obtained by writing down
the condition that the equation (1), considered as a quad-
ratic equation in m, may have equal roots.

By writing (1) in the form
_ a
Yy=mx+ m’

it is clear that it always touches the parabola ¥*® = 4ax.

In the next article we shall apply this method to the
general case,

434. To find the envelope of a straight line whose
equation involves, in the second degree, a variable parameter.

The equation to the straight line is of the form
NP+ +RB=0 ...cccevnnnn.n 1),

where A is a variable parameter and P, @, and R are
expressions of the first degree in  and .

Equation (1) may be looked upon as an equation
giving the two values of A corresponding to any given
point 7'.
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Through this given point two straight lines to touch the
required envelope may therefore be drawn.

If the point 7' be taken on the required envelope, the
two tangents that can be drawn from it coalesce into the
one tangent at 7' to the envelope.

Conversely, if the two straight lines given by (1)
coincide, the resulting condition will give us the equation
to the envelope.

But the condition that (1) shall have equal roots is

This is therefore the equation to the required envelope.

Since P, @, and R are all expressions of the first degree,
the equation (2) is, in general, an equation of the second
degree, and hence, in general, represents a conic section.

The envelope of any straight line, whose equation
contains an arbitrary parameter and square thereof, is
therefore always a conic.

435. The method of the previous article holds even if
P, @, and R be not necessarily linear expressions. It
follows that the envelope of any family of curves, whose
equation contains a variable parameter A, in the second
degree, is found by writing down the condition that the
equation, considered as an equation in A, may have equal
roots.

486. Bx. 1. Find the envelope of the straight line which cuts off
JSrom two given straight lines a triangle of constant area.

Let the given straight lines be taken as the axes of coordinates and
let them be inclined at an angle w.

The equation to a straight line cutting off intercepts fand g from
the axes is

Ty .
FH gL 1))

If the area of the triangle cut off be constant, we have
3f.g .8in w=const.,
ie. Sg=const.=K2.........cecueeriniirnnnnnn. (2).

On substitution for g in (1), the equation to the straight line
becomes [ -fK?+ K% =0.
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By the last article, the envelope of this line, for different values of
S, is given by the equation
(-K?*=4. K%y,
. K3
i.e. Y="p-

The result is therefore a hyperbola whose asymptotes coincide with
the axes of coordinates.

Bx. 3. Find the envelope of the straight line which i3 such that
the product of the perpendiculars drawn to it from two fixed points is
constant.

Take the middle point of the line joining the two fixed points as
the origin, the line joining them as the axis of z, and let the two
points be (d, 0) and (-d, 0).

Let the variable straight line have as equation

y=mz+c.
The condition then gives

mdt+c -md+c
izm X Jirmd
8o that cA-m3d?=4 (1 +m?).
The equation to the variable straight line is then
Yy-mr=c= ,J (m
Or, on squaring,
m2 (22 - A — d%) — 2may + (y* - 4) =0.
By Art. 435, the envelope of this is
(@ryP=4(22- 4 - @) (y*- 4),
22 ¥?
ixata
This i8 a conic section whose axes are the axes of coordinates and
whose foci are the two given points.

=oconstant=4,

i.e. =1

Bx. 8. Find the envelope of chords of an ellipse the tangents at the
end of which intersect at right angles.

. z? 92
Let the elhpse be a—'2+‘b—’=1.
If the tangents intersect at right angles, their point of intersection
P must lie on the director circle, and hence its coordinates must be of
the form (c cos 6, ¢ sin 6), where ¢ =,/a?+ b2

The chord js then the polar of P with respect to the ellipse, and
hence its equation is

z.ccos0 y.csinf
<+ .=

e =t
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Let t=:tan g . Then since

]
ooso—l m2 1-2 and ginf= 2
—l+tanﬂg 1+ Tive
the equation to the line is

EL—t’ cy 2t
@iietpize™

t.e. ] [l+cz 2t 1- —)
The envelope of this is (Art. 434),
(+3)=+(02%) (0-3).

i.e. ﬁ—++_1

al+b? ad+b?

=1,

t.e.

. at bt - .
Since e i m—a 32— 3%, this equation represents a conic
confocal with the given one.

Bx. 4. The normals at four points of an ellipse meet in a_point ;
if the line joining one pair of these points pass through a fized point,
prove that the line joining the other pair lopes a parabola which
touches the azes.

Let the equation to the ellipse be
23
g {,_1 ................................ ),
and let the equation to the two pairs of lines through the pomts be
WHmy=1.....ccccooerruiiiiiinniininnnn 2),
and Le+my=1 ....ccccooeiiiinniiiinnnninns 3).
By Art. 412, Cor. (1), we then have
1 1
lll=—a'—2 and 7')"”11=-—b—z ...................... (4).
If the straight line (3) pass through the fixed point (f, g), we have
Lf+mg=1,
so that, by (4) A I 1
] y ’ a2l bgm— t]
and therefore l=-~ f _mb?

el
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If this value of I be substituted in (2), it becomes
m3ab2y+ m(algy - V*fx - a%b?) — a?g =0,

the envelope of which is
(a’gy - b¥z — a??)?= — 4a’g . a®b?y,
i.e. (a%gy — b*fz)? +2a%b3 (b z + a’gy) + a'b*=0 ........... (5).

This is a parabola since the terms of the second degree form a
perfect square. Also, putting in succession z and y equal to zero, we
get perfect squares, so that the parabola touches both axes.

437. To find the envelope of the straight line
le+my+n=0..................... (1),

where the quantities I, m, and n are connected by the
relation
al® + bm? + cn® + 2fmn + 2gnl + 2hlm =0...... (2).

[Equation (1) contains two independent parameters 4

. n

and 1—'3', whilst (2) is an equation connecting them. We
n

_y
could therefore solve (2) to give 5 in terms of g; on sub-

stituting in (1) we should then have an equation containing
one independent parameter and its envelope could then be
found.

It is easier, however, to proceed as follows.]

Eliminating » between (1) and (2), we see that the
equation to the straight line may be written in the form

al? + bm? + ¢ (le + my)* — 2 (fm + gl) (I + my) + 2him = 0,
. I\? 1
e (a—2gw+cx2)(q—7;) +2(ca:y——g_1/—fw+h);ﬁ
+(b=2fy +cy?) = 0.
The envelope of this is, by Art. 435,
(cxy — gy — frx + h)* = (0 — 2gx + ca®) (b - 2 fy + cy®),
%.e., on reduction,
a? (be = /%) + ¥* (ca— g°) + 2xy (fy —ch)
+ 2w (fh—bg) + 2y (gh—af ) +ab—A*=0.
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The envelope is therefore a conic section.
Cor. The envelope is a parabola if

(fg — ch)* = (be = f?) (ca - &),
i.e. if c¢=0, or if abc+ 2fgh—af?—bg*—ch*=0.

488. Bx. Find the envelope of all chords of the parabola y*>=4az
which subtend a given angle a at the vertex.

Any straight line is
le+my+n=0.....cc..cevuurvrmenniiennnnn (1)
The lines joining the origin to its intersections with the parabols
are, (by Art. 122), ny3= - 4az (lz +my),

i.e. ny?+4a may + 4alz?=0.
If a be the angle between these lines, we have
2./ 42w — 4aln
tane= =t
ie. 1642 — 16a2 cot? am?+ n?+ 8aln (1+ 2 cot?a)=0.

With this condition the envelope of (1) is, by the last article,
23( - 16a%cot? a) + y*[16a2 - (4a + 8a cot® a)?]

+2z, 16a cot? a (4a + 8a cot? a) — 25644 cot?a =0,
i.e. the ellipse

[z~ 4a(1+2cot?a)P+4 cosec? a . y?=64 cot? a . cosec? a.

EXAMPLES. XLIX.

Find the envelope of the straight line 'z +¥=1 when

B

1. ac+dB8=c. 2. a+ﬂ+~/a’+ﬁ“=c.
b a?

3. ;’+§’=1'

Find the envelope of a straight line which moves so that

4, the sum of the intercepts made by it on two given siraight
lines is constant.

5. the sum of the squares of the perpendiculars drawn to it from
two given points is constant.

6. the difference of these squares is constant.

7. Find the envelope of the straight line whose equation is
azcos 0+ bysin 0=c=.
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8. Ciroles are described touching each of two given straight lines;
prove that the polars of a given point with respect to these circles all
touch a parabola.

9. From any point P on a parabola perpendiculars PM and PN
are drawn to the axis and tangent at the vertex; prove that the
envelope of MN is another parabola.

10. Shew that the ve‘l;:ge of the chord which is common to the
parabola y?=4az and its circle of curvature is the parabola

y2+12az=0.

11. Perpendiculars are drawn to the tangents to the parabola
y2=4az at the points where they meet the straight line z=b5; prove
that they envelope another parabola having the same focus.

12. A variable tangent to a given parabola cuts a fixed tangent in
the point 4; prove that the envelope of the straight line through 4
perpendicular to the variable tangent is another parabola.

13. Shew that the envelope of chords of a parabola the tangents
at the ends of which meet at a constant angle is, in general an ellipse.

14. A given parabola slides between two axes at right angles;
prove that the envelope of its latus rectum is a fixed oircle.

15. Prove that the envelope of chords of an ellipse which subtend
a right angle at its centre is & concentric circle.

16. If the lines joining any point P on an ellipse to the foci meet
the curve again in Q and R, prove that the envelope of the line QR is
the concentric and coaxal ellipse

z? + y? (1 +e’)’_l

advr\I-a

17. Prove that the envelope of chords of the rectangular hyperbola
zy=a?, which subtend a constant angle a at the point (, y’) on the
curve, is the hyperbola

2%+ y2y2=2a%zy (1 + 3 cot? a) — 4at cosec® a.

18. Chords of a conic are drawn subtending a right angle at a
fixed point O. Prove that their envelope is a conic whose focus is O
and whose directrix is the polar of O with respect to the original conie.

19. Shew that the envelo%e of the polars of a fixed point O with
respect to a system of confocal conics, whose centre is C, is & parabola
having CO as directrix.

20. A given straight line meets one of a system of confocal conics
in P and @, and RS is the line joining the feet of the other two
normals drawn from the point of intersection of the normals at Pand
Q; prove that the envelope of RS is a parabola touching the axes.
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21, ABCD is a rectangular sheet of paper, and it is folded over 8o
that C lies on the side 4B; prove that the envelope of the crease so
formed is a parabola, whose focus is the initial position of C.

22. A oxrole, whose centre is 4, is traced on a sheet of pa
any point B is taken on the paper. If the paper be folded so that the
circumference of the circle passes through B, prove that the envelope
of the crease so formed is a conic whose foci are 4 and B,

23. In the conic %:1 —ecosd find the envelope of chords which
subtend a constant angle 2a at the focus.’

24. Circles are described on chords of the parabola y*=4az, which
are parallel to the straight line Iz +my =0, as diameters; prove that
they envelope the parabola

(ly +2ma)®=4a (2 +m?) (z+a).

25. Prove that the envelope of the polar of any ;)omt on the circle
(x+a)®+ (y + b)®*=k? with respect to the circle z3+ y?=c? is the conic

B (z* +y%) = (az + by + 7)™

26. Chords of the conic ;=1 —ecos 0 are drawn passing through

the origin and on these circles as diameters circles are described.
Shew that the envelope of these circles is the two circles

! (l—+ ecosﬂ):l:::e.
r\r
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x + . + -
23. 5008%2¢3+%5m¢12¢2=008¢12¢2-
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VI (Pages 48, 49.)
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3 2 _p2
5. ten A 6.t 7. tani().
8. 4y+8z=18. 9. Ty-8z=1I8. 10. 4y+11z=10.
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20. y=k; (L-m?)(y—k)=2m (@-h).
21. tan13%; 9z-Ty=1; Tx+9y="T3.




ANSWERS, i

VIL (Pages 53, 54.)

1 4. 2 . 3. 64 " al+ab-b?
c-d Ja’+b”

6. acosj(@-g). 8 o

9. [fosyarm, o} 1L 3(2+y3).

VIIL (Pages 61-65.)
( ity 41

11
.3 {mlm, "‘1+’T‘a)}
4. {acos}(p,+¢,)sec (4, - ¢y, aﬂmi(ﬁ+¢s)°°°i(¢x d)}

2. (a+b’ a+d

abd- b’) 200’
5. ( b+d b+b’) 8. 17J29
8. y=qa; 3y=4z+3a, 9. (1, 1); 45°
10. (E:i);tan"(io. ’ 1L (-1, -8); (8, 1); (5, 8).
12. (2, 1); tan7ly, 13, 45°; (-5,8); 2-8y=9; 2z-y=8,
14. 3and -3. 19. m,;(ay- “x)"'"‘n(“a a1)+m;(ax a3)=0.
20. (-4, -3). 21, (H, - 23. 43z-29y="71.
24, z-y=11. 25. y=3z. 26. y==.
27. a'y-bz=ab(a-b). 28. 8z+4y=5a. 929, z+y+23=0.
30. 23z+28y=11. 31, 18z-28y=64.
33. A:c+By+C+J\(A %+ B'y + C’) =0 where \ is

C. Ba+C A%’ + By’ +C
(1) _6—” (2) , (3) —FE:I?C' d (4) _A’:c’+B’y7+G"
87. y=2; z=6. 88. 99z+7Ty+71=0; Tz -9y -37=0,

39. z-2y+1=0; 2z+y=3.
40. =(24/2-8)+y(V/2-1)=44/2-5;
z(23/2+8)+y (/2 +1)=44/2+5.
4l. (y-b)(m+m)+(z-a)(l-mm)=0;
(y - b) (1 - mm') - (z - a) (m +m")=0.
49. 33z+9y=381; 112z-64y+141=0; 7y -z =18,
43. z(3+WM10)+y (6+V/17)=16+4/17;
z(4+4/10)+y (2+4/10) =4 ,/T0+12;
(2 A/32-8./5)+y (/38 - 5,/5)=6 /34~ 15 /5.
A(y-k)-B(z- h)__d:(A:c+By+C')
At an angle of 15° or 75° to the axis of z.

&

27—2
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IX. (Pages 72, 73.)
M a2 @) 15 2. tanr 3008,
o (mi+1
tan—? (m’—lmw) .

y=0, y=z-a, =24, y=2a, y=z+4, =0, y=z, z=a, and
y=a, where a is the length of a side.

Y (6-4/3)+2(34/8-2)=22-9,/3. 11. &

10y -11z+1=0; % J/II1.

X. (Pages 78—80.)

(‘7é53)° 5 21565 55- (-3 5 -

-85- - 35-7./5

(G aies o) P LA A TS

{6+J10 2+~/10}. (s_ﬂo 2-J10)_ (e-Jm 16+J10)
2 ’ 2 ’ 2 ’ 2 H 3 ) 3 .

(% %), (2,12), (12,2), and (-3, - 3); $4/2, 44/2, 44/2, and 6,/2.

(- 134, 19%). 11. 4. 12. 73 13.

17a3

T 15. 3(b-c)(c-a)(a-D).

a? (mq — my) (my —my) (M ‘"’2)+12";1’m,’m,:- . "

—e) = (my - 1f(ea—co) | (3= (-]
a(” s m-m). 18, j{Gal, oo, ool
1o’y+sze+43=o; 252420y +5=0; y=>5z+2; 52::-{:80![:47.

. (4+38, $+V3); (4+348, §+34/3)

XI. (Pages 86—87.)
23+ 2zy cota—y3=al. 2. y*+Az?=)Aal
(m+1)z=(m-1)a. 4, (m+n) (2 +y®+a®) - 2az (m-n)=c
;- 6. 3—y=dcoseo’%’.
z+y=2ccosecw. 8. y-z=2ccosecw.
2%+ 27y 008 w + Y3 =4c? cosec? w.
(23 +y3) 008 w + 2y (1+ cos? w) =z (a cos w+b) +y (bcos w+a).
z (m+c08 w)+Y (1 +m cos w) =0.
(@) z+y-a-b=0;

z+y=csec?

(ii) y=a=. 19. A straight line.

A circle, centre O. 25. A straight line,

If P be the point (&, k), the equation to the locus of S is
h k

Z4-=1
z'y
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XII. (Page 94.)
(z-3y)(z—4y)=0; tan—' gy, 2, (2z-1ly)(2z-y)=0; tan~14.
(11z+2y) (3z - Ty)=0; tan~1§}. 4, z=1; z=2; z=38.

y=%4. 6. (y+42)(y—2z)(y - 3z)=0; tan™(-9); tan~1 (3).
z(1-8in6)+ycos0=0; z(1+8inb)+yoosd=0; 6.
y8inf+zcosf= £z ,/cos 20 ; tan~! (cosec 8 \/cos 26).

1222 - Try - 12y3=0; T1z2+ 942y - Tly?=0; 22 -y2=0;

z’—y’:O.

XIII. (Pages 98, 99.)
(8, —42); 45°% 2. (2,1); tan1§. 3. (4% -4); 90°
(-1,1); tan™23. @, -15. 7. 2. 8 -10or—174.
-12. 10. 6. 11. 6. 12. 14. 13. -3.
$orig, 16. @) c(a+b)=0; (ii) e=0, or ae=bd.
by +6z=>56; 5y —6z=14.

XV. (Page 112.)
(1) y2=42"; (2) 22+y2=6.
(1) 22 +y?%=2czx’; (2) 2% +y?=2cy".
(a-b)2 (22 +y) =a%2.
(1) 22y’ +a2=0; 922+ 25y2=225; z"4+y"=1.
23+ y%=1r3; 2% -y"%=a? 008 2a. 6. z?-4y?=a?

tan-! g; - C+ L2+ B.
" XVI. (Page 117.)

2z’ - /6y’ +1=0. 2. z3+,/3z'y'=1. 8. z%+y?=8.
y'3=4z' cosec® a.
XVII. (Pages 123—125.)
¥4y 42z -4y=4. 2. 22+y%+10z+12y =39.
2%+ y? - 2az + 2by =2ab. 4, 23+y?+2az+ 2by +263=0.
’ k 5
(2, 4); A/61. 6. (5 1); 313 7. (§,o); Lé.k,
-1 NI , (_f____, _"w__);
(9, - 1) ‘\/f g 9 ,\/1+m’ m c
1622+ 15y% — 94z + 18y + 556 =0.
b(a+y?- af) =z (b*+ h? - ad). 15, 2?+y?-az-by=0.
@1 +y?— 220 - dy +26=0. . 17. 2*+y?-5z-y+4=0.

3%+ 3y? - 29z - 19y + 56 =0.,
b (#+?) - (a4 59) 2+ (a - ) (0343 =0.
224+ y? - 3z - 4y=0,



vi COORDINATE GEOMETRY.
a3+ b
22. 2+y*- b(z =05 o3
28, a+yi- hz ky=0. 24, z’+¢=h2yJa’—b’=b’.
25. 23+y?-10z—10y+35=0. 26. z%+y?-2az - 2ay +a?=0.
27, 23+y3+2(5+4/12) (z+y)+87+10,/12=0.
28. 2*+y?-6z+4y+9=0. 29. b(z?+yY)=z(B*+c).
30. 2*+y3+6,/2y—62+9=0.
8l. z2+y*-8z+2=0; 2234 242 - bz — \/3y+3=0;
2234+ 2y% - Tz — /3y +6=0.
33. (z+21p+(y+13)P=652% 34, 8%+ 8y?— 26z — 3y +18=0.
86. 2*+y3=a?+d%; 3 +y*-2(a+b)z+2(a-b)y+ad+02=0.
XVIIL (Pages 134, 135.)
1. 5z-12y=152. 2. 24z+10y+151=0.
3. z+2y=+2,/5. 4, s+ +g+=25./+ -
5. (-3 73)- 6. c=a; (0,b). 7. Yes
.8. k=40or -10. 9. acos?a+bsinda:x \/ad+b3sinda.
~10. da+Bb+C=c\JP+5B2
11. (1) y=mzxa,/I+m?; @) my+a==%aJi+md;
(3) az+y /PP —a?=ab; 4) z+y=an/2.
12. 2, /r’—a—:—’fz—ba. 18. 23+y3+,/2ex=0; 23+y2+,/2ay=0.
14, c=b-am; c=b-am= \/(1+m3) (a+59).
15. 23+y?-6x-8y +3334=0.
16. 22+y?-2cz—2cy+c3=0, where 2c=a+b= \/a®+ b2
17. 52%+5y%- 102+ 80y +49=0. 18. 2®+y?-2cx - Bcy+c2=0.
19. (z-7)%+(y-hp3=r~ 20. 2%+y*—2az - 28y=0.
XIX. (Pages 144, 145.)
1. z+2y=T. 2. 8z-2y=11. 3. z=0.
4. 23z+5y=57. 5. by-az=a’ 8. (5,10).
7. & -1%): 8. (1, -2). 9. & -¥
10. (-2a, -2b). 11. 6, —-%).
12. 8y-2z=18; (-2, 34%). 13, (2, -1). 14 27+y?=2"
18. 3446. 19. 9. 20, A/2a3+2ab+0%. 21, (34,2 %
93. (1) 2823+ 332y — 28)3— T15z - 195y + 4226=0;

(2) 12323 64zy + 3y® — 664z + 226y + 763=0.
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XX. (Pages 147, 148,
(; 33T B, tan? i) .

73— 2ra cosec a . cos (f —a) +a3cot? a=0, r=2asin §.
72 —r[a cos (6 — ) + b cos (6 — B)]+ ab cos (a - 8) =0.
Y3+ 2ac=1.

XXI. (Page 149.)
1905 (4y;2f' ‘?&5_2!)-, ggﬁ\/fm.
80°; (8-64/8, 12-4,/3); Af47-24
( — foos w f—goou:) N+ g' - 2fgoosu 2fgoosw

sinfw ' sin? sin w
23+ 322y +y7 -2 (4+8./2) - 2y (3+4/2) +3(2J2 - 1) =0.
2I+zy+y3+11z+18y+13=0. . )
(z-2) (z-2")+@y-¥) ly -y") +eosw[(z~2') (y - y")
+(z-2") (y - y)1=0.

XXTI. (Pages 156—159.)

A circle. 5. A circle. 8. A circle.
23+ y3 - 22y coB w= 21;1_@ the given radii being the axes.
A circle. 12. A circle.

(1) A circle; (2) A circle; (3) The polar of O.
The curve r=a+a cos 6, the fixed point O being the origin and
the centre of the circle on the initial line.
The same circle in each case.
2ab-+n/aT+ b3, 85. aaft}; z=4a; 63z+16y+100a=0.
(i) z=0, 3z+4y=10, y=4, and 3y=4z.
(i) y=mz+ c /I+m?, where
£Oto) o _=(B-o)
“Va-Grar ” Ja--op

XXIII. (Pages 164, 165.)

8234 8y - 8z + 29y =0. 4, 15z-11y=144.
z+10y=2. 6. 6z-Ty+12=0. 7. (-1, -3)
(38, 1) 1. (A+1)(=+y) + 2\ (z+2y) =4+ 6\

(y —z)*=0.



COORDINATE GEOMETRY.

XXIV. (Pages 172, 173.)
22 -y + 2may =c. 12. k(2+y?)+(a—c)y—ck=0.
22 +y?-cx - by +a3=0. 14, 2*+y%-16zx-18y-4=0.

XXV. (Pages 178, 179.)

(7z + 6y)? - 570z + 750y + 2100=0.

(az - by)* - 2a*z — 263y + at+ a3b? + H=0.

(-1,2); y=2; 4; (0, 2). 4 4 8); z=4; 2; (4,4).
(a, g) z=a; 2a; (a, 0). . 6. (1,2); y=2; 4; (0,2).
() §; ()4 9. (26). 11 y=-2; y-12=m(z - 24).

3 _
(Bf, -3); om0 15. opmtas

XXVL (Pages 185—187.)
4y=38z+12; 4z+3y=34. 2. 4y-z=24; 4rx+y=108.
y-z=3; y+r=9; z+y+8=0; z-y=9.
y=z; z+y=4a; y+z=0; z-y=4a.

dy=z+38; (28, 14). 6. (g 3% .
y+2z+1=0; (3, -2); 2y==2+8; (8, 8).

(3a, 2/30) ; (g, _2_;/_%). 9. dy=9z+4; dy=xz+36.
(“/—ﬂa, a,\/Q—\/5_+§); (3a, 2./3a).

bty +adz+atvi=o. 15. z=0. 25, 8a; 10a.

XXVII. (Pages 197, 198.)
424 3y+1=0. 5. 56y=25.

XXVIIL. (Pages 203—205.)

25. Take the general equation to the circle and introduce the

condition that the point (at, 2at) lies on it; the sum of the
roots of the resulting equation in ¢ is then found to be zero.

28. It can be shewn that the normals at the points “t,” and “t,”

[ ol

meet on the parabola when ¢t;=2; then use the previons
example,

XXIX. (Pages 209—211.)

y=bz. 2. cz=a. ’ 8. y=ad.
y=(r-a) tan 2a. 5. y'—Az?=2az.
B=@2[(z - a)® +97]. 19. y'=2a(z-a).
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y'-ky=2a(z- ). 2l y*
(847 +y* - 2az)*tan? a = 162 (daz - y7).
Y4+ 4ay? (a - z) - 16a%z + a*B=0.

The parabola y?=2a (z + 2a).

ix

(y* - 2az + 4a%) + 8a4=0.

XXX, (Pages 214—216.)
y*=a(z-a), 2. y’=daz. 3. 27ay?=(2z - a)(z - ba)3.

A parabola. 5. A straight line.
27ay? - 4 (z — 2a)*=constant.
A straight line, itself a normal.

XXXII. (Pages 234, 235.)

(a) 3274-5y3=32; (B) 322+ Ty2=115.
2022 + 36y3 = 405. 3. 2+242=100.

O F5 4w (+3060); @

4, 8z7+9y3=1152.
$; 355 (0, £4:5);

(3) %5 35 (0, 5) and (0, 1).

v

5 7. 72+ 2zy+Ty*+10z - 10y + 7=0. 8. Without.

z+44/3y=24./3; 11z -4,/3y=24,/3; 7 and 13.

o) ta.n“g; () tan-! J 7:’; (3) 45°.

XXXIII. (Pages 245—248.)

z+3y=5; 9z-3y-5=0.
25z +6y=187; 6z-25y+20=0.
22/T24y=16; LdzryJT={ 7.

Y=8x§/18; (=3 /65, = 4 V/195).
Use Arts. 145 and 260.

XXXIV. (Pages 262—264.)

z+2=4. 2. 2z-Ty+
3z+8y=9; 2z=3y.

927 - 24zy — 4y%+ 30z 4 40y - 55=0.

Y +b2=0; a%y~b%=0; ady+bz=0

8=0; (-4, -4).

; ay+bz=0,

XXXV. (Pages 268—270.)

223~ 2zy cot 2a — y2=a2 - b2,
@2 (2% - a?=4 (%23 + a%y? - a%?).
A (2% - a?)3=2 (223 + b%3 + ay? — a%?).

2. cx?-2zxy=ca?.
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(2 + y* - a? - b3)*=4 oot? a (b2z? + a?y? - a??).

ay=bztiana. 7. bix?+a%y2=4a?"
b4z3+ aty?=a%b? (a?+ b9). 9. b3+ a%y?=2a%y.
(V%23 + a2y =c? (b4z2 +a%y?).

(a3 + b?) (b33 + a%y?)2=ah? (b'z3 + a%y?).

bz (z - h) +a% (y - k)=0.

c2a®h? (V22 + a%?) + (V322 + a%y? - 1) (b4 + a%y?) =0.

(V23 + aty?)d=a%dt (23 + y3).

athh (22 + y3) = (a2 + %) (b3 + a?p?)t.

If the chords be PK and PK’, let the equation to KK’ be
y=mz+c; transform the origin to P and, by means of Art. 122,
find the condition that the angle KPK’ is a right angle; substi-

tate for ¢ in the equation to KK’, and find the point of inter-
section of KK’ and the normal at P. See also Art. 404,

XXXVI (Pages 282—284.)

1627 - 9y3=36. 2. 2523 - 144y2=900.
6527 — 36y7=441. 4, 22-y=82
6, 4, (=413, 0), 2¢. 8. 3z2-y3=3as.
Ty3+ 24zy — 24az — Bay + 15a2=0; (-g, a); 122 - 9y +29a=0.
(5, — %) 9. 24y-30z=+,/161.
— 2
y=szs /-0 (a=+b=)~/,,———._,,,-
9y =32z. 16. 125z - 48y=481.
3 p?
(1) 22+ aty?=a?b%(b*-a?); 2) z=a.%Tb—2;

(8) *(a%+2b%) — a%y? - 2atez +a? (a? - b2) =0.

. XXXVII. (Pages 295, 296.)
At the points (a, £b4/2).
(2z+y+2)(z+2y+1)=0, (3z+y+2)(z+2y+1)=const.
822+ 10zy + 8y? + 142+ 22y +7=0;
823+ 102y + 8y% + 142 + 22y + 23=0.

XXXVIIL. (Pages 302—305.)
(£84/6a, £}4/6a); (*3.4/6a, =,/6a).

XXXIX, (Pages 319—321.)

Transform the equation of the previous example to Cartesian
Coordinates,
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XL. (Pages 331, 332)
A hyperbola; (2,1); ¢=-26. '
An ellipse; (-}, -}); ¢'=-4. 3. A parabola.
A hyperbola; (-4}, - ¢%); ¢ = - 46.
Two straight lines; (- 44, 1§); ¢'=0.
A hyperbola; (-4, 3%); ¢'= - .
(22+8y-1) (4 -y +1)=0; 82%+10ay - 8y*— 22+ 4y =0.
(Y+2-2)(y-22-8)=0; y—zy-223—by+24+18=0.
(11z - 2y + 4) (52 — 10y + 4)=0;
5627 — 1202y + 20y + 64z - 48y + 82=0.

. 192%+24zy +92 - 222 -6y +4=0;

1922 + 24wy + y3 - 222 - 6y +8=0.
23— yd=4al, 13. (az - by)3=(a*- b9 (ay - b).
(z-y)*-2(z+y) +4=0. 15. (zy+ab)tan(a-B)=bz—ay.

3 z_:.i."bL:—zg_oos(a—ﬁ):sln’(a—p). 17. A point.

Two straight lines. 19. A siraight line and a parabola.

. A straight line and a rectangular hyperbola.

A circle and a rectangular hyperbola.

A straight line and a circle.

Two imaginary straight lines.

A circle and a straight line. 25. A parabola.

A circle, 27. A hyperbola. 28. An ellipse,

XLI. (Pages 346—348.)

-1503 -23 o s . .
576’ 169 )" 9. Two coincident straight lines.

tan6,= - §, tan6,=3, r,=4/3, and r,=4.

. 6,=45° 0,=135°% r,=,/2, and r,=2.

tan6,=7+5,/2; tan6,=7-5,2,

"= 'J—?G'(2\/2-2), 3= J§(2N/2+2)’
2. 29, /3. 30. §./-3.
(;%ﬂ/jﬁ, %"*%“J./mq); $1/20+2,J10.
(3 2vs, THEv8)i avs

(47106, 321405 /5.
(-1+36, 1£36); 2.




10.
1L

14,

15.
20.

COORDINATE GEOMETRY.

XLII. (Pages 354, 355.)

(1) 8; (2) 3; (3)4; (4)2; (5)4; “(6) 3; (7)3.
Az+Hy=0 and Hz+By=0; H2=A4B, so that the conic is a
pair of parallel straight lines.

z(z+3y)=0; (2z—3y)*=0.

XLITI. (Pages 363, 364.)

A conic touching S=0 where T'=0 touches it and having its
asymptotes parallel to those of S=0.

A conic such that the two parallel straight lines u=0 and
u+ k=0 pass through its intersections with S=0.

XLIV. (Pages 376—377.) 5 66
(-LHmd (-8 7 (-h-B 8 (G 169)-
(-4, -4) and (-1, -1); z+y+7=0 and z+y+3=0.
If P be the given point, C the centre of the given director circle,
and PCP’ a diameter, the focus S is such that PS.P'S is
constant.

If PP’ be the given diameter and S a focus then PS.P'S is

constant.
XLV. (Pages 383, 384.)

623 + 122y + Ty? - 122 - 13y =0.

The narrow ellipse (Art. 408), which is very nearly coincident with
the straight line BD, is one of the conics inscribed in the quadri-
lateral, and its centre is the middle point of BD. This middle
point, and similarly the middle points of 4C and OL, therefore
lie on the centre-locus.

XLVI. (Pages 390—392.)
Proceed as in Art. 413, and use, in addition, the second result
of Art. 412, Cor. 2. From the two results, thus obtained,
eliminate 3.
Take Lz+my—1=0 (Art. 412, Cor. 1) a8 a focal chord of the
ellipse.
If the normals are perpendicular, so also are the tangents; the
line Lz+my—1=0 is therefore the polar with respect to the
ellipse of & point (5/a?+b?cosd, A/a*+b38in6) on the director
circle.
The triangle 4BC is a maximum triangle (Page 235, Ex. 15)
inscribed in the ellipse.
Use the notation of Art. 333.
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XLVII. (Pages 397, 398,

The locus can be shewn to be a straight line which is perpendi-
cular to the given straight line; also the given straight line
touches one of the confocals and its pole with respect to that
confocal is its point of contact ; this point of contact therefore
lies on the locus, which is therefore the normal.

As in Art. 366, use the Invariants of Art. 135,

XLVIIL (Pages 405—407.)

Two of the normals drawn from O coincide, since it is a centre of

curvature. The straight line {;z+m;y=1 (Art. 412) is therefore
a tangent to the ellipse at some point ¢ and hence, by Art. 412,
the equation to QR can be found in terms of ¢.

XLIX. (Pages 414—416.)

2
(by — az— c)?=4acz. 2. z’+y’—c(x+y)+%=
;: + y, 1. 4. A parabola touching each of the two lines.
A central conie. 6. A parabola. 7. a*z?+dyi=

The line joining the foci is a particular case of the confocals and
the polar of O with respect to it is the major axis; the minor
axis is another particular case, so that two of the polars are lines
through C at right angles; also the tangents at O to the con-
focals through it are two of the polars, and these are at right
angles. Thus both C and O are on the directrixz.

The crease is clearly the line bisecting at right angles the line
joining the initial position of C to the position which C ocoupies
when the paper is folded.

lcosa

r

=1-ecosacosé.
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