
Copyright © 1978 American Telephone and Telegraph Company

The bell System Technical journal
Vol. 57, No. 6, July-August 1978

Printed in U.S.A.

UNIX Time-Sharing System:

Foreword

by M. D. MclLROY, E. N. PINSON, and B. A. TAGUE
(Manuscript received March 17, 1978)

Intelligence ... is the faculty ofmaking artificial objects, especially tools

to make tools. — Bergson

UNIX is a trademark for a family of computer operating systems

developed at Bell Laboratories. Over 300 of these systems, which

run on small to large minicomputers, are used in the Bell System for

program development, for support of telephone operations, for text

processing, and for general-purpose computing; even more have

been licensed to outside users. The papers in this issue describe

highlights of the UNIX family, some important uses, and some UNIX

software tools. They also attempt to convey a feeling for the partic-

ular style or outlook on program design that is both manifest in

UNIX software and promoted by it.

The UNIX story begins with Ken Thompson's work on a cast-off

PDP-7 minicomputer in 1969. He and the others who soon joined

him had one overriding objective: to create a computing environ-

ment where they themselves could comfortably and effectively pur-

sue their own work— programming research. The result is an

operating system of unusual simplicity, generality, and, above all,

intelligibility. A distinctive software style has grown upon this base.

UNIX software works smoothly together; elaborate computing tasks

are typically composed from loosely coupled small parts, often

software tools taken off the shelf.

The growth and flowering of UNIX as a highly effective and reliable

1899



time-sharing system are detailed in the prizewinning ACM paper by

Ritchie and Thompson that has been updated for this volume. That

paper describes the operating system proper and lists the important

utility programs that have been adopted by descendant systems as

well. There is no more concise summary of the UNIX time-sharing

system than the oft-quoted passage from Ritchie and Thompson:

It offers a number of features seldom found even in larger operating systems,

including

(/) A hierarchical file system incorporating demountable volumes,

(//') Compatible file, device, and inter-process I/O,

(/'//) The ability to initiate asynchronous processes,

O'v) System command language selectable on a per-user basis,

(v) Over 100 subsystems including a dozen languages.

Implementation details are covered in a separate paper by Thomp-
son. Matters of efficiency and design philosophy are considered in a

retrospective paper by Ritchie.

The most visible system interface is the "shell," or command
language interpreter, through which other programs are called into

execution singly or in combination. The shell, described by

Bourne, is actually a very high level programming language that

talks about programs and files. Particularly noteworthy are its nota-

tions for input-output connections. By making it easy to combine
programs, the shell fosters small, coherent software modules.

The UNIX system and most software that runs under it are pro-

grammed in the general-purpose procedural language C. C provides

almost the full capability of popular instruction sets in a setting of

structured code, structured data, and modular compilation. C is

easy to write and (when well-written) easy to read. The language

and the philosophy behind it are covered by Ritchie, Johnson, Lesk,

and Kernighan.

Until mid-1977, the UNIX operating system and its variants ran

only on computers of the Digital Equipment Corporation PDP-11

family. In an interesting exercise in portability, Johnson and

Ritchie exploited the machine-independence of C to move the

operating system and the bulk of its software to a quite different

Interdata machine. Careful parameterization and some repackaging

have made it possible to use largely identical source code for both

machines.

Variations

Three papers by Bayer, Lycklama, and Christensen describe

1900 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



variations on the UNIX operating system that were developed to

accommodate real-time processing, microprocessor systems, and

laboratory support applications. They were motivated by the desire

to retain the benefits of the unix system for program development

while offering different trade-offs to the user in real-time response,

hardware requirements, and resource management for production

programs. Many UNIX utilities— especially those useful for writing

programs and processing text— will run under any of these variant

systems without change.

The mert operating system (Lycklama and Bayer) provides a

generalized kernel that permits extensive interprocess communica-

tion and direct user control of peripherals, scheduling, and storage

management. Applications with stringent requirements for real-

time response, and even different operating systems (in particular,

unix) can be operated simultaneously under the mert kernel.

The microprocessor version of the UNIX operating system (Lyck-

lama) and the Satellite Processing System that shares process execu-

tion between one big and one tiny machine (Lycklama and

Christensen) involve other trade-offs between efficiency and

resource requirements. Both also may be looked upon as vehicles

for applications in which one wishes to delegate some sticky part of

the job— frequently involving real-time demands— to a dedicated

machine. The application described later in the issue by Won-
siewicz, Storm, and Sieber is a particularly interesting example

involving unix, the microprocessor system, and the Satellite Pro-

cessing System.

Software Tools

Perhaps the most widely used UNIX programs are the utilities for

the editing, transformation, analysis, and publication of text of all

sorts. Indeed, the text-processing utilities covered by Kernighan,

Lesk, and Ossanna were used to produce this issue of the B.S.T.J.

Some more unusual applications that become possible where text

processors and plenty of text are ready at hand are described by

McMahon, Morris, and Cherry.

UNIX utilities are usually thought of as tools— sharply honed pro-

grams that help with generic data processing tasks. Tools were

often invented to help with the development of UNIX programs and

were continually improved by much trial, error, discussion, and

redesign, as was the operating system itself. Tools may be used in

combination to perform or construct specific applications.

FOREWORD 1901



Sophisticated tools to make tools have evolved. The basic

typesetting programs nroff and troff covered by Kernighan, Lesk,

and Ossanna help experts define the layouts for classes of docu-

ments; the resulting packages exhibit only what is needed for one

particular type of document and are easy for nonspecialists to use.

Johnson and Lesk describe Yacc and Lex, tools based in formal

language theory that systematize the construction of compiler "front

ends." Language processors built with the aid of these tools are typ-

ically more precisely defined and freer from error than hand-built

counterparts.

The UNIX system was originally designed to help build research

software. What worked well in a programming laboratory also

worked well on modest projects to develop minicomputer-based sys-

tems in support of telephone company operations. Such projects are

treated in the final group of papers and are more fully introduced by

Luderer, Maranzano, and Tague. The strengths of this environ-

ment proved equally attractive to large programming projects build-

ing applications for large computers with operating systems that

were less tractable for program development. The pwb/unix exten-

sions discussed by Dolotta, Haight, and Mashey provide such pro-

jects with a "front end" for comfortable and effective program

development and documentation, together with administrative tools

to handle massive projects.

Style

A number of maxims have gained currency among the builders

and users of the UNIX system to explain and promote its characteris-

tic style:

(/') Make each program do one thing well. To do a new job,

build afresh rather than complicate old programs by adding

new "features."

(/'/) Expect the output of every program to become the input to

another, as yet unknown, program. Don't clutter output

with extraneous information. Avoid stringently columnar or

binary input formats. Don't insist on interactive input.

(//'/') Design and build software, even operating systems, to be

tried early, ideally within weeks. Don't hesitate to throw

away the clumsy parts and rebuild them.

(/v) Use tools in preference to unskilled help to lighten a

1902 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978



programming task, even if you have to detour to build the

tools and expect to throw some of them out after you've

finished using them.

Illustrations of these maxims are legion:

(/) Surprising to outsiders is the fact that UNIX compilers pro-

duce no listings: printing can be done better and more flexi-

bly by a separate program.

(//) Unexpected uses of files abound: programs may be compiled

to be run and also typeset to be published in a book from the

same text without human intervention; text intended for

publication serves as grist for statistical studies of English to

help in data compression or cryptography; mailing lists turn

into maps. The prevalence of free-format text, even in

"data" files, makes the text-processing utilities useful for

many strictly data processing functions such as shuffling

fields, counting, or collating.

(/'/*/*) The UNIX system and the C language themselves evolved by

deliberate steps from early working models that had at most

a few man-months invested in them. Both have been fully

recoded several times by the same people who designed

them, with as much mechanical aid as possible.

O'v) The use of tools instead of labor is nicely illustrated by

typesetting. When a paper needs a new layout for some rea-

son, the typographic conventions for paragraphs, subhead-

ings, etc. are entered in one place, then the paper is run off

in the new shape without retyping a single word.

To many, the UNIX systems embody Schumacher's dictum,

"Small is beautiful." On the other hand it has been argued by

Brooks in The Mythical Man Month, for example, that small is

unreal; the working of a handful of people doesn't extrapolate to

the world of big jobs. We agree only in part, for the present

volume demonstrates with unusual force another important factor:

intelligently applied computing technology can compress jobs that

used to be big to manageable size. The first system had only about

5 man-years' work in it (including operating system, assembler,

Fortran, and many other utilities) when it began to be used for Bell

System projects. It was, to be sure, a taut package that lacked the

gamut of libraries, languages, and support for peripheral equipment

typical of a large commercial system. But the base was unusually

FOREWORD 1903



pliable and responsive; new facilities usually could be added with

much less work than is required by corresponding features in other

systems.

The UNIX operating system, the C programming language, and the

many tools and techniques developed in this environment are

finding extensive use within the Bell System and at universities,

government laboratories, and other commercial installations. The
style of computing encouraged by this environment is influencing a

new generation of programmers and system designers. This,

perhaps, is the most exciting part of the UNIX story, for the

increased productivity fostered by a friendly environment and qual-

ity tools is essential to meet ever-increasing demands for software.

UNIX is not the end of the road in operating system innovations, but

it has been a significant step that Bell Laboratories people are proud

to have originated.

1904 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978


