Druckfehlerberichtigungen und Ergänzungen

Seite 87, Abschn. (7): Verwende zur Phosphatasebestimmung besser das haltbare Colaminphenolphthaleinphosphat (Merck) anstatt Natriumphenolphthaleinphosphat.

COPYRIGHT, 1901, BY W. B. SAUNDERS & COMPANY

REGISTERED AT STATIONERS' HALL, LONDON, ENGLAND
INDEX OF PLATES.

PLATE.
2. Streptococcus lanceolatus. Gamaleia. (Diploccocus pneumoniae. A. Fränkel.)
5. Sarcina cervina. Stubenrath.
 Sarcina pulmonum. Virchow.
 Sarcina erythromyxa. Král.
 Sarcina lutea. Flügge.
 Sarcina aurantiaca. Flügge.
 Sarcina rosea. Schröter, emended by Zimmermann.
 Micrococcus badius. Lehm. and Neum.
 Sarcina canescens. Stubenrath.
 Sarcina pulmonum. Virchow, Hauser.
8. Micrococcus pyogenes a aureus. (Ros.) Lehm. and Neum.
 (Staphylococcus pyogenes aureus. Rosenbach.)
 Micrococcus pyogenes β citreus. (Ros.) (Staphylococcus pyogenes citreus. Rosenbach.)
 Micrococcus candidans. Flügge.
12. Bacterium septiæmiae hæmorrhagiciæ. Hüppe. (Chicken cholera, rabbit septicemia.)
14. Bacterium acid i lactici. Hüppe. (Lactic acid bacillus.)
16. Bacterium typhi. Eberth, Gaffky. (Typhoid bacillus.)
 Bacterium hæmorrhagicum. (Kolb.) Lehm. and Neum.
 (Morb. Werlhofii.)
INDEX OF PLATES.

22. Bacterium kiliense. (Breunig and Fischer.) Lehm. and Neum.
24. Bacterium pyocyaneum. (Flügge.) Lehm. and Neum. (Green pus.)
25. Bacterium fluorescens. (Flügge.) Lehm. and Neum. (Bacillus fluorescens liquefaciens, Flügge.)
27. Bacterium syneyaneum. (Ehrenberg.) Lehm. and Neum. (Bacillus cyanogenes Flügge. Blue milk.)
31. Bacterium vulgare. (Hauser.) Lehm. and Neum. (Proteus vulgaris Hauser.)
32. Bacterium vulgare β mirabilis. (Hauser.) Lehm. and Neum.
33. Bacterium erysipelatos suum. (Löffler.) Migula. (Hog erysipelas.)

Bacterium murisepticum. (Flügge.) Migula. (Mouse septi-
cemia.)
34. Bacillus anthracis. F. Cohn and R. Koch. (Splenic fever.)
35. Bacillus anthracis. F. Cohn and R. Koch. (Splenic fever.)
36. Bacillus anthracis. F. Cohn and R. Koch. (Splenic fever.)
37. Bacillus mycoides. Flügge. (Root-bacillus.)
Bacillus butyricus. Hüppe. (Butyric acid bacillus.)
Bacillus vulgaris. (Flügge.) Migula.
39. Bacillus subtilis. F. Cohn. (Hay-bacillus.)
40. Bacillus subtilis. F. Cohn.
42. Bacillus vulgaris. (Flügge.) Migula. (B. mesentericus vul-
gatus Flügge.) Potato bacillus.
43. Bacillus mesentericus. (Flügge.) Lehm. and Neum. (B. mes-
entericus fuscus Flügge.)
44. Bacillus tetani. Nicolaier. (Tetanus bacillus, lock-jaw.)
45. Bacillus Chauvæi. Macè. (Symptomatic anthrax, black-leg.)
47. Vibrio cholerae. (Koch.) Buchner. (Comma bacillus.)
48. Vibrio cholerae. (Koch.) Buchner.
49. Vibrio cholerae. (Koch.) Buchner.
50. Vibrio cholerae. (Koch.) Buchner.
51. Vibrio cholerae. (Koch.) Buchner.
Vibrio Metschnikovii. Gamaleia.
52. Vibrio Proteus. Buchner. (Vibrio Finkler.)
Vibrio berolinensis. Rubner.
Vibrio aquatilis. Günther.
54. Vibrio albensis. Lehm. and Neum. (Phosphorescent Elbe Vibrio.)
INDEX OF PLATES.

PLATE.
Spirillum concentricum. Kitasato.

Spirilla from nasal mucus.
Spirillum undula. Ehrenberg.
Spirillum spermatozoides. Löffler.
Spirochaete of oral mucus.
Spirillum Obermeieri. F. Cohn. (Spirilla of recurrent fever.)

57. Corynebacterium mallei. (Löffler.) Lehm. and Neum. (Glanders bacillus.)

58. Corynebacterium diphtheriae. (Löffler.) Lehm. and Neum. (Diphtheria bacillus.)
Corynebacterium pseudodiphteriticum. (Hoffmann-Wellenhofer.) Lehm. and Neum. (Pseudodiphteria bacillus.)
Corynebacterium xerosis. (Kuschbert, Neisser.) Lehm. and Neum. (Xerosis bacillus.)

59. Corynebacterium diphtheriae. L. and N.
Corynebacterium pseudodiphteriticum. L. and N.
Corynebacterium xerosis. L. and N.

60. Corynebacterium diphtheriae. L. and N.
Corynebacterium pseudodiphteriticum. L. and N.
Corynebacterium xerosis. L. and N.

61. Mycobacterium tuberculosis. (Koch.) L. and N. (Tubercle bacillus.)

Mycobacterium tuberculosis ; piscicola. L. and N.

63. Mycobacterium lacticola β perrugosum. L. and N.
Mycobacterium phlei. Lehm. and Neum.

64. Mycobacterium lacticola a planum. L. and N.

65. Actinomyces bovis. Harz. (Actinomyces.)

66. Actinomyces farcinicus. (Nocard.) Gasperini. (Fracin du bœuf.)

67. Actinomyces chromogene. Gasperini. (Cladothrix dichotoma Autorum non Cohn.)

68. Bacterium tussis convulsivae. (Czaplewski and Hensel.) (Whooping-cough.)
Bacterium ulceris cancrosi. (Ducrey, Kruse.) L. and N.
(Ulcus molle.)
Streptococcus meningitidis cerebrospinalis (Weichselbaum).
Lehm. and Neum.
Bacterium influenzæ. (R. Pfeiffer.) L. and N. (Influenza bacillus.)
Bacillus gangrænae pulpæ. Arkövy.

PLATE I.

Streptococcus pyogenes. Rosenbach.

I. *Agar streak culture*, ten days at 37°.

II. *Gelatin stab culture*, six days at 22°. So vigorous a growth does not often occur.

III. *Agar stab culture*, six days at 37°. Stab canal.

IV. *Agar stab culture*, six days at 37°. Surface growth.

V. *Gelatin plate*, six days at 22°.

VI. *Gelatin plate*, six days at 22°. × 70. Somewhat abnormal form with irregular borders. The larger colonies are superficial; the smaller, deep.

VII. *Gelatin plate*, six days at 22°. × 70. Common form. The upper, superficial; the lower, deep.

VIII. *Agar plate*, eight days at 37°. × 50. Larger colony superficial; smaller colonies, deep.

IX. *Microscopic preparation* from a two days’ bouillon culture at 37°. × 700. The individual cocci are usually more regularly round.

X. *Microscopic preparation* from a two days’ agar culture. Shorter chains. × 1000.

XII. Chains of streptococci, before and during division. Highly magnified.
PLATE 2.

Streptococcus lanceolatus. Gamaleia. (Diplococcus pneumoniæ A. Fränkel.) (Pneumococcus.)

I. Gelatin stab culture, ten days at 22°.
II. Agar streak culture, four days at 37°.
III. Agar stab culture, four days at 37°. Stab canal.
IV. Agar stab culture, four days at 37°. Surface growth.
V. Agar plate, three days at 37°. Natural size.
VI. Agar plate, three days at 37°. × 50. Superficial colony. The darker colony lies near the surface.
VII. Agar plate, three days at 37°. × 50. Deep colonies.
VIII. Gelatin plate, eight days at 22°. The upper colony is superficial; the lower ones, deep.
IX. Smear preparation from pneumonic sputum. × 1000.
X. Pure culture from a three days' old agar plate. × 1000.

XI. Microscopic preparations: (a) Diplococci as single pairs and in chains. Highly magnified. (b) Diplococci surrounded by gelatinous capsules.
PLATE 3.

Sarcina flava. De Bary, emended by Lehm. and Stubenrath.

I. Gelatin stab culture, ten days at 22°.
II. Agar streak culture, six days at 22°.
III. Agar stab culture, six days at 22°; stab canal.
IV. Agar stab culture, six days at 22°; surface growth.
V. Gelatin plate, five days at 22°. Natural size.
VI. Gelatin plate, five days at 22°. × 60. Superficial colony.
VII. Agar plate, six days at 22°. Natural size.
VIII. Agar plate, six days at 22°. × 60. Upper colony is superficial, lower ones are deep.
IX. Potato culture, ten days at 22°.
X. Microscopic preparation. Pure culture from an agar plate. × 1000. Stained with fuchsin and differentiated with acetic acid.
XI. Microscopic preparation. Pure culture in bouillon; unstained. × 1000.
XII. Sarcinae forming bales of packets. (Single packets regularly grouped together.)
XIII. Sarcinae in bunches of packets. (Single or irregular packets, grouped together irregularly.)
Sarcina aurantiaca. Flügge.

I. Gelatin stab culture, six days at 22°.
II. Agar streak culture, five days at 22°. The color is not so red in all cases; usually light orange. This is also true of the agar stab and potato cultures.
III. Agar stab culture, six days at 22°. Stab canal.
IV. Agar stab culture, six days at 22°. Surface growth.
V. Gelatin plate, five days at 22°. Natural size. The gray zone about the colonies indicates a depression.
VI. Gelatin plate, five days at 22°. X 60. A colony in the early stage. The gray ring represents a zone where it is sinking in.
VII. Agar plate, five days at 22°. Natural size.
VIII. Agar plate, five days at 22°. X 60. Upper colony, superficial; lower colonies, deep. The superficial colonies usually become opaque toward the center.
IX. Potato culture, eight days old.
X. Microscopic preparation. Pure culture from agar. X 1000. Stained with fuchsin, differentiated with acetic acid.
PLATE 5.

Various Sarcinæ.

I. Sarcina cervina Stubenrath. Agar streak culture, fifteen days at 22°, isolated from gastric contents.

II. Sarcina pulmonum Virchow. Agar streak culture, fifteen days at 37°.

III. Sarcina erythromyxa Král. Agar streak culture, thirty days at 22°, isolated from beer.

IV. Sarcina lutea Flügge. Agar streak culture, ten days at 22°, isolated from stomach.

V. Sarcina aurantiaca Flügge. Agar streak culture, ten days at 22°, isolated from yeast.

VI. Sarcina rosea Schröter, emended by Zimmermann. Agar streak culture, twenty-five days at 22°, isolated from light beer.

VII. Micrococcus radius Lehm. and Neum. Agar streak culture, fifteen days at 22°, isolated from air.

VIII. Sarcina canescens Stubenrath. Agar streak culture, twenty days at 22°, isolated from the stomach.
PLATE 6.

Micrococcus luteus. Ferd. Cohn, emended by Lehm. and Neum.

I. *Gelatin stab*, six days at 22°.

II. *Gelatin plate*, three days at 22°. × 50. To the left, superficial; to the right, a deep colony.

III. *Microscopic preparation.* × 1000. From a two-days'-old agar plate. Often the micrococci are grouped in tetrads.

IV. *Agar plate*, five days at 22°. Natural size. The colonies are sometimes more yellow.

V. *Potato culture*, six days at 22°. Sometimes it has a dull luster.

Sarcina pulmonum. Virchow. Hauser.

(Pulmonary Sarcina.)

VI. *Gelatin stab*, twenty days at 22°. The stab is in reality more gray.

VII. *Agar streak*, twenty days at 22°.

VIII. *Gelatin plate*, twenty days at 22°. To the left, a superficial; to the right, a deep colony.

IX. *Potato culture*, twenty days at 22°.

X. *Stained flagella.* Highly magnified.
PLATE 7.

I. Agar streak culture, five days at 37°.
II. Gelatin stab culture, ten days at 22°. Stab canal. Characteristic nail-head form.
III. Gelatin stab culture, ten days at 22°; surface growth. In the reproduction the color has turned out brown, but should be white.
IV. Agar stab culture, six days at 37°. Surface growth.
V. Agar stab culture, six days at 37°. The growth along the stab is not always so luxuriant.
VI. Agar plate, five days at 37°. Natural size.
VII. Gelatin plate, eight days at 22°. The colonies are naturally pure white. Natural size.
VIII. Gelatin plate, eight days at 22°. × 60. The larger colony is superficial; the smaller, deep.
IX. Microscopic preparation. From a two-days'-old agar culture. × 800. There are not always found tetrads alone, often also single cocci.
X. Potato culture, seven days at 37°.
XI. Microscopic picture. Tetrads before, during, and after division; highly magnified.
PLATE 8.

Micrococcus pyogenes \(\alpha \) aureus. (Rosenbach.) Lehm. and Neum.

(Staphylococcus aureus Ros.)

I. Gelatin stab culture, six days at 22°.
II. Agar streak culture, five days at 22°.
III. Agar stab culture, five days at 22°. Stab canal.
IV. Agar stab culture, five days at 22°; surface growth.
V. Agar plate culture, six days at 22°, natural size. Superficial and deep colonies.
VI. Agar plate, six days at 22°. \(\times 60 \). Small superficial colony.
VII. Gelatin plate, four days at 22°, natural size. Superficial and deep colonies.
VIII. Gelatin plate, four days at 22°. \(\times 60 \). Superficial and deep colonies.
IX. Potato culture, six days at 22°.
X. Microscopic preparation. \(\times 1000 \). From an agar culture, two days old, at 22°.
XI. Microscopic preparation. Single cocci, before, during, and after division. \(\times 1500 \).
PLATE 9.

Micrococcus pyogenes γ albus. (Rosenbach.) L. and N.
(Staphylococcus albus Rosenbach.)

I. *Agar streak culture*, four days at 22°.
II. *Gelatin stab culture*, five days at 22°.

Micrococcus pyogenes β citreus. (Rosenbach.) L. and N.
(Staphylococcus citreus Rosenbach.)

III. *Agar streak culture*, six days at 22°.

Micrococcus candidans. Flügge.

IV. *Gelatin stab culture*, six days at 22°.
V. *Gelatin plate*, eight days at 22°.
VI. *Gelatin plate*, six days at 22°. × 50. To the left a superficial, to the right a deep colony.
VII. *Potato culture*, ten days at 22°.
VIII. *Microscopic preparation* from a two-days’-old culture on agar. × 700.

I. Agar streak culture, ascites-glycerin-agar, three days at 37°.

II. Agar plate, forty-eight hours at 37°. × 60. Superficial colonies. The agar was poured out, and blood from the finger-tip smeared upon it, and upon this was placed the gonorrhœal pus. The reddish places are blood. The colonies of the gonococcus grow principally at the periphery of the blood smear.

III. Serum-agar plate. The upper colony three days, the lower twenty-four hours, at 37°. × 60. Superficial colonies. One c.c. of human serum was added to the agar.

IV. Serum-agar plate. The same colonies after eight days.

V. Ascites-glycerin-agar plate, forty-eight hours at 37°. × 60. Superficial colonies of a pure culture from blennorrhœal pus. To 5 c.c. of a 2% agar, containing 5% of glycerin, 1.5 c.c. of human ascites-fluid were added.

VI. Ascites-glycerin-agar plate, forty-eight hours, at 37°. × 60. Superficial colonies. After pouring out the agar, blennorrhœal pus was smeared upon it. The darker septa are pus (pushed together by the growing colonies); also the material at the periphery of the colonies.

VII. Smear preparation from gonorrhœal pus. × 1000. Stained with methylene-blue.

VIII. Smear preparation from blennorrhœal pus. × 1000. Stained with methylene-blue. A pus cell in which lie the micrococci, almost always in fours in capsules. The preparation contains a great many micrococci thus situated.

IX. Smear preparation from blennorrhœal pus. × 1000. Stained with methylene-blue and eosin.

X. Micrococci, highly magnified, schematic.
PLATE II.

Micrococcus roseus. (Bumm.) Lehm. and Neum. (Diplococcus roseus Bumm.)

I. *Gelatin stab culture*, twenty days at room temperature.

II. *Agar streak culture*, thirty days at room temperature. The white reflex on the right side is not always so marked.

III. *Agar stab culture*, ten days at 22°. Stab canal.

IV. *Agar stab culture*, ten days at 22°. Surface growth.

V. *Agar plate*, twelve days at 22°. \(\times 50 \). Above, a superficial; below, a deep colony.

VI. *Agar plate*, fourteen days at 22°. \(\times 50 \). More delicate structure. Above, a superficial; below, deep colonies.

VII. *Gelatin plate*, eight days at 22°. \(\times 50 \). Superficial and deep colonies.

IX. *Potato culture*. A culture of the Diploc. roseus, grown upon a culture of anthrax; ten days at room temperature.

X. *Potato culture*, twenty days at room temperature.

XIII. *Microscopic preparation*, from three-days'-old agar culture. \(\times 1000 \). The cocci are undergoing division.
PLATE 12.

Bacterium septicaemiae haemorrhagicae. Hüppe.
(Chicken Cholera, Rabbit Septicemia, etc.)

I. Gelatin stab culture, seven days at 22°.
II. Agar streak culture, seven days at 22°.
III. Agar plate, five days at 22°. Natural size.
IV. Agar plate, five days at 22°. × 60. Superficial colony. Compare also Plate 14, vi; Plate 17, vi; Plate 18, vii.

V. Agar plate, five days at 22°. × 60. Deep colonies.
VI. Gelatin plate, five days at 22°. Natural size.
VII. Gelatin plate, five days at 22°. × 90. Deep colonies.
VIII. Gelatin plate, five days at 22°. × 90. Superficial colony. Compare also Plate 14, viii; Plate 17, i; Plate 16, viii; Plate 19, iii, iv, vii.
IX. Microscopic preparation. × 1000. Pure culture from agar plate.
Tab. 12.
PLATE 13.

Bacterium pestis. Lehm. and Neum.

I. *Streak culture* (ascites-glycerin-agar), three days at 37°.

II. *Streak culture* (agar), forty-eight hours at 37°. (After a culture of Dr. Dieudonné, preserved with formalin.) The streak was made with the juice direct from a bubo. The transparent, dewdrop-like growth is characteristic.

III. *Stab culture* (gelatin), six days at 22°. The growth consists of minute, waxy, markedly elevated colonies, which become confluent; also the same upon the gelatin plate (v, b).

IV. *Plate culture* (gelatin), six days at 22°. × 60. (a) Deep colony; (b) superficial colony.

V. *Plate culture*: (a) Glycerin-agar, three days at 37°. Natural size. Superficial colonies. (b) Gelatin, six days at 22°. Natural size. Superficial colonies. Compare what is said under Fig. III.

VI. *Plate culture* (agar), forty-eight hours at 37°. × 60. Superficial colonies. They correspond to the dewdrop-like colony in the agar streak culture (ii). (a) Younger, (b) older colonies.

VII. *Plate cultures*, forty-eight hours at 37°. × 60.

(a) Ordinary agar
(b) Glycerin-agar
(c) Ascites-glycerin-agar
(d) Ascites-glycerin-agar, deep colony.

The crumbly character of cultures after being cultivated in contrast to very fresh cultures is to be noted (compare vi).

VIII. *Microscopic preparation*, three days at 37° on glycerin-agar. × 1000. Stained with fuchsin. Involution forms.

IX. *Microscopic preparation*: Smear from the juice of a bubo. × 1000. Stained with methylene-blue. (From a preparation of Dr. Dieudonné.)

X. *Microscopic preparation*: (a) Ordinary agar, twenty-four hours at 37°. × 1000. Stained with fuchsin. (b) Ordinary bouillon, twenty-four hours at 37°. × 1000. Stained with fuchsin.
PLATE 14.

Bacterium acidi lactici. Hüppe. (Laetic Acid Bacillus.)

I. Gelatin stab culture, five days at 22°. The stab canal in nature is somewhat whiter.

II. Agar streak culture, five days at 22°.

III. Agar stab culture, three days at 22°. Stab canal.

IV. Agar stab culture, three days at 22°. Surface growth.

V. Agar plate, three days at 22°. Natural size.

VI. Agar plate, three days at 22°. $\times 50$. Upper colony superficial, lower colonies deep. Compare also Plate 18, VII.

VII. Gelatin plate, two days at 22°. Natural size.

VIII. Gelatin plate, two days at 22°. $\times 50$. Upper colony superficial, lower colonies deep. The superficial colonies may vary very much. Compare also Plate 16, VIII, IX; Plate 17, I, II; Plate 19, IV, VII.

IX. Microscopic preparation. Pure culture from an agar colony. $\times 800$.

X. Potato culture, six days at 22°. The air-bubbles on the surface often cover it completely.
Tab. 15.
PLATE 15.

Bacterium pneumoniae. Friedländer. (Friedländer's Pneumonia Bacillus.)

I. Agar streak culture, four days at 22°.
II. Gelatin stab culture, ten days at 22°.
III. Agar stab culture, four days at 22°. Stab canal.
IV. Agar stab culture, four days at 22°. Surface growth.
V. Gelatin plate, three days at 22°. Natural size.
VI. Agar plate, two days at 22°. × 60. The brown whetstone-shaped colony is deep.
VII. Gelatin plate, three days at 22°. × 50. Upper, superficial; lower, deep colony.
VIII. Agar plate, four days at 22°. Natural size. The delicate gray colonies are deep; also the smallest colonies. One colony in the reproduction has turned out yellowish.
IX. Microscopic preparation. Pure culture from an agar plate. × 800. Stained with fuchsin.
XI. Potato culture, six days.
PLATE 16.

Bacterium typhi. Eberth. Gaffky. (Typhoid Bacillus.)

I. Agar stab culture, three days at 22°. Stab canal.
II. Agar stab culture, three days at 22°. Surface growth.
III. Gelatin stab culture, eight days at 22°. Stab canal.
IV. Gelatin stab culture, eight days at 22°. Surface growth.
V. Agar streak culture, four days at 22°. Compare also Plate 18, iii.
VI. Gelatin streak culture, three days at 22°. Compare also Plate 18, ii.
VII. Gelatin plate, thirty-six hours at 22°. Deep colony. Compare also Plate 14, viii; Plate 19, v.
VIII. Gelatin plate, thirty-six hours at 22°. Superficial colony. Compare also Plate 14, viii; Plate 19, iii.
IX. Gelatin plate, four days at 22°. Superficial colony. Compare also Plate 19, iv, vii.
PLATE 17.

Bacterium typhi. Eberth. Gaffky. (Typhoid Bacillus.)

I. *Gelatin plate*, eight days at 22°. × 90. Superficial colony. Compare also Plate 19, vi, vii.

II. *Gelatin plate*, eight days at 22°. × 150. Superficial colony.

III. *Gelatin plate*, four days at 22°. Natural size.

IV. *Agar plate*, four days at 22°. Natural size.

V. *Agar plate*, four days at 22°. × 60. Deep colonies.

VI. *Agar plate*, four days at 20°. × 60. Superficial colony.

VII. *Potato culture*, five days at 22°.

VIII. *Microscopic preparation*. Pure culture from agar plate. × 1000.

XI. *Microscopic preparation of Bacterium typhi murium* Löffler, with flagella and capsule. × 1500. Stained by Löffler’s method.
PLATE 18.

Bacterium coli (Escherich). L. and N.

I. Gelatin stab culture, ten days at 22°.
II. Gelatin streak culture, four days at 22°. In nature is transparent, resembling mother-of-pearl in iridescence. Compare also Plate 16, vi.
III. Agar streak culture, four days at 22°. Compare also Plate 16, v.
IV. Agar stab culture, two days at 22°. Stab canal.
V. Agar stab culture, two days at 22°. Surface growth.
VI. Agar plate, four days at 22°. × 60. Deep colonies. Compare also Plate 14, vi.
VII. Agar plate, four days at 22°. × 60. Part of a superficial colony. May also occasionally present forms like the bacillus acidi lactici. Compare Plate 12, iv; Plate 14, vi; Plate 17, vi.
VIII. Agar plate, three days at 22°. Natural size.
IX. Potato culture, five days at 22°. May also be paler or more deeply colored.
X. Bacteria with long flagella of Bacterium brassicae acidae. × 1000. Stained according to Löffler.
XI. Bacterium of pigeon diphtheria surrounded by flagella. × 1000. Stained according to Löffler.
XII. Bacteria with one flagellum, rarely two flagella, of Bact. coli β unipolaris. × 1000. Stained according to Löffler.
PLATE 19.

Bacterium coli (Escherich). L. and N.

I. *Gelatin plate*, eight days at 22°. × 60. Cultivated from pus. Deep colonies of abnormal form.

II. *Gelatin plate*, four days at 22°. Natural size.

III. *Gelatin plate*, one day at 22°. × 90. Superficial colony. Compare also Plate 14, viii; Plate 16, viii.

IV. *Gelatin plate*, four days at 22°. × 60. Superficial colony. Compare also Plate 16, ix; Plate 17, i, ii.

V. *Gelatin plate*, four days at 22°. × 60. Deep colonies.

VI. *Gelatin plate*, ten days at 22°. × 90. Superficial colony.

VII. *Gelatin plate*, ten days at 22°. × 90. Superficial colony.

VIII. *Microscopic preparation*. Pure culture from agar plate. × 500.

IX. *Different varieties of coli bacteria*. × 1000. Variable sizes.
PLATE 20.

Bacterium latericum. Adametz.

I. *Agar streak culture*, seven days at 22°.
II. *Gelatin stab culture*, fourteen days at 22°.
III. *Gelatin plate*, seven days at 22°. \(\times 60 \). To the right deep, to the left superficial colonies.
IV. *Potato culture*, thirty days at 22°. Natural size.
V. *Agar plate*, seven days at 22°. \(\times 60 \). To the right a superficial, to the left a deep colony.
VI. *Microscopic preparation*. Pure culture on agar, twenty-four hours old. \(\times \) about 800.

Bacterium hæmorrhagicum (Kolb). L. and N. (Morbus Werlhofii.)

VII. *Microscopic preparation*. Pure culture from bouillon, three days old. (Copied after Kolb, A. G., Bd. vii, Plate ii, Figs. 1 and 2.)
VIII. *Smear preparation from the liver of a dog*. (Copied after Kolb, l. c., Bd. vii, Plate iii, Fig. 8.)
PLATE 21.

Bacterium prodigiosum (Ehrenb.). Lehm. and Neum.

I. Gelatin stab culture, one day at 22°.
II. Agar streak culture, four days at 22°.
III. Agar stab culture, four days at 22°. Stab canal.
IV. Agar stab culture, four days at 22°. Surface growth.
V. Agar plate, from two to four days at 22°. Natural size. Colonies with and without color.
VI. Agar plate, eight days at 22°. × 60. Superficial colony reddish, deep one yellowish.
VII. Gelatin plate, two days at 22°. × 60. Superficial colony just beginning to sink in.
VIII. Gelatin plate, two days at 22°. Natural size.
IX. Potato culture, eight days at 22°. Typical with metallic luster on the surface.
X. Potato culture, eight days at 22°. Atypical white growth.
XI. Microscopic preparation. Pure culture from agar. × 800. Stained with fuchsin.
XII. Bacteria with several flagella. × 1000. Stained according to Löffler.
PLATE 22.

Bacterium kiliense (Breunig and Fischer). L. and N. (Kiel Water Bacillus.)

I. Agar streak culture, four days at 22°.
II. Gelatin stab culture, four days at 22°. No formation of pigment.
III. Gelatin plate, five days at 22°. Natural size. Colonies with and without production of pigment.
IV. Gelatin plate, five days at 22°. × 60. Superficial colony.
V. Gelatin plate, five days at 22°. × 60. Deep colony.
VI. Agar plate, five days at 22°. Natural size. Colored and uncolored, superficial and deep colonies.
VII. Agar plate, five days at 22°. × 60. Colorless colonies. To the right, superficial; to the left, deep.
VIII. Agar plate, five days at 22°. × 60. Colored colonies. To the right, superficial; to the left, deep.
IX. Microscopic preparation. Pure culture from agar plate. × 1000. Stained with fuchsin.
X. Potato culture, five days at 22°.
XI. Bacteria with several flagella. × 1000. Stained according to Löffler.
Tab. 22.
Tab. 23.
PLATE 23.

Bacterium violaceum (J. Schröter). Lehm. and Neum.

I. *Gelatin stab culture*, ten days at ordinary temperature.

II. *Agar streak culture*, six days at ordinary temperature. The white borders after a longer time become likewise violet.

III. *Agar stab culture*, seven days at ordinary temperature. Stab canal.

IV. *Agar stab culture*, seven days at ordinary temperature. Surface growth.

V. *Agar plate culture*, four days at ordinary temperature. × 60. Superficial and deep colonies. Within the former is to be seen the original deeply located colony.

VI. *Agar plate culture*, eight days at ordinary temperature. Natural size. The colonies often also become dark violet.

VII. *Gelatin plate culture*. Natural size. Six days at ordinary temperature. The blue zones are not always so intensely colored.

VIII. *Gelatin plate culture*, six days at ordinary temperature. × 60. The smaller colony lies near the surface, the larger is on the surface.

IX. *Microscopic preparation*. × 700. From a five-days'-old agar culture.

X. *Potato culture*, six days at ordinary temperature.

XI. *Bacteria with flagella*. × 1000. Stained according to Löffler.

XII. *Bacteria with flagella*. × 1000. From a culture from Sweden.
PLATE 24.

Bacterium pyocyaneum (Flügge). Lehm. and Neum. (Green Pus.)

I. *Gelatin stab culture*, three days at 22°.
II. *Agar streak culture*, two days at 37°.
III. *Gelatin plate*, two days at 22°. × 60. Colonies located deeply and just below the surface, in young and older stages.
IV. *Gelatin plate*, five days at 22°. × 60. Part of a superficial colony.
V. *Gelatin plate*, two days at 22°. Natural size.
VI. *Agar plate*, two days at 37°. Natural size.
VII. *Agar plate*, two days at 37°. × 60. Above, superficial; below, deep colonies.
VIII. *Potato culture*, three days at 37°. Natural size.
IX. *Microscopic preparation*. Pure culture from agar plate. × 800.
X. *Bacteria with one, more rarely two polar flagella*. × 1000. Stained according to Löffler.
PLATE 25.

Bacterium fluorescens. Lehm. and Neum. (Bacillus fluorescens liquefaciens. Flügge.)

I. Gelatin stab culture, two days at 22°.
II. Gelatin stab culture, eight days at 22°.
III. Agar streak culture, three days at 22°.
IV. Agar stab culture, four days at 22°.
V. Gelatin plate, two days at 22°. × 90. Part of a superficial colony.
VI. Agar plate, twenty-four hours at 22°. × 60. (e) Superficial, (i) deep colonies.
VII. Gelatin plate, three days at 22°. Natural size.
VIII. Microscopic preparation. Pure culture from agar plate. × 800.
IX. Potato culture, four days at 22°. Natural size. Compare also Plate 18, ix; Plate 26, v.
X. Bacteria with flagella, usually one, more rarely two or more. × 1000. Stained according to Löffler.
PLATE 26.

Bacterium putidum (Flügge). Lehm. and Neum. Bacterium fluorescens putidum Flügge. (Bacterium fluorescens non-liquefaciens Autor.)

I. Gelatin stab culture, three days at 22°.
 II. Gelatin plate, twenty-four hours at 22°. × 90. Superficial colony. Compare Plate 14, viii; Plate 19, iii.
 III. Gelatin plate, twenty-four hours at 22°. × 90. Deep colony.
 IV. Gelatin plate, four days at 22°. Natural size. Appearance of colonies upon a dark background.
 V. Potato culture, four days at 22°. Natural size. Compare also Plate 18, ix.

VI. Microscopic preparation. Pure culture from gelatin plate. × 800. Upon agar, threads are usually produced.

VII. Agar plate, eight days at 22°. Natural size. Appearance of the colonies upon a white background.

VIII. Agar plate, three days at 22°. × 60. (e) Superficial, (i) deep colonies.

IX. Bacteria with one, more rarely two flagella. × 1000. Stained according to Lößler.

IX.
Bacterium syncyaneum (Ehrenb.). Lehm. and Neum. (Bac. cyanogenes Flügge; Blue Milk.)

I–III. Gelatin stab cultures, from six to ten days at 22°. There occur still other shades of color.

IV. Agar stab culture, ten days at 37°.
V. Bouillon culture, four days at 37°.
VI. Milk culture, three days at 37°. Inoculated upon unsterilized milk.
VII. Microscopic preparation. Pure culture from agar plate. × 800.
VIII. Microscopic preparation. Pure culture. Flagella staining with Löffler’s mordant. × 800.
IX. Bacteria with flagella, one or more at one pole. × 1000. Stained according to Löffler.

IX.
PLATE 28.

Bacterium syncyaneum (Ehrenb.). Lehm. and Neum.
(Bac. cyanogenes Flügge; Blue Milk.)

I–III. _Potato cultures_, from three to ten days at 22°. Many varieties of potato inoculated with the same culture. The differences in colors may be still more numerous.

IV. _Agar plate_, three days at 22°. Natural size.

V. _Agar plate_, three days at 22°. × 60. To the right, deep; to the left, superficial colonies.

VI. _Gelatin plate_, three days at 22°. Natural size.

VII. _Gelatin plate_, eight days at 22°. Natural size. Appearance of colonies upon a white background.

VIII. _Gelatin plate_, three days at 22°. × 60. Above, superficial; below, deep colonies.
PLATE 29.

Bacterium Zopfii. Kurth.

I. Gelatin stab culture, six days at 22°.
II. Agar streak culture, thirty-six hours at 37°. It is actually a grayish color and transparent.
III. Agar stab culture, six days at 22°.
IV. Agar stab culture, six days at 22°. Surface growth.
V. Gelatin plate, seven days at 22°. Natural size.
VI. Gelatin plate, thirty-six hours at 22°. Natural size.
VII. Gelatin plate, twenty-four hours at 22°. $\times 90$. Thread-like portion of the deep colony.
VIII. Gelatin plate, twenty-four hours at 22°. $\times 60$. Superficial colony. Compare Plate 31, vii; Plate 32, viii.
PLATE 30.

Bacterium Zopfi. Kurth.

I. *Gelatin plate*, eight days at 22°. × 90. Peripheral portion of a colony.

II. *Microscopic preparation*. × 1000. Pure culture, from agar plate, stained with fuchsin.

III. *Agar plate*, four days at 22°. Deep colony.

IV. *Agar plate*, twenty-four hours at 37°. Natural size.

V. *Agar plate*, twelve hours at 37°. Deep and superficial colony.

VI. *Agar plate*, twenty-four hours at 37°. × 60. Superficial colony, surrounded by innumerable bacteria swarming outward.

VII. *Gelatin plate*, eight days at 22°. Sausage-shaped forms of the deep colony.

IX. *Bacteria with numerous flagella*. × 1000. Stained according to Löffler.
Tab. 31.
PLATE 31.

Bacterium vulgare (Hauser). Lehm. and Neum. (Proteus vulgaris Hauser.)

I. Gelatin stab culture, twenty-four hours at 22°.
II. Agar streak culture, thirty-six hours at 22°.
III. Agar plate, thirty-six hours at 22°. Natural size.
IV. Agar plate, four days at 22°. × 60. Above, superficial; below, deep colonies.
V. Gelatin plate, thirty-six hours at 22°. Natural size.
VI. Gelatin plate, thirty-six hours at 22°. × 60. To the right, superficial; to the left, deep colonies. The lower, approaching the surface, begins to liquefy.
VII. Gelatin plate, three days at 22°. × 60. Deep colony: Zooglea form, similar to the Bact. Zopfii.
VIII. Microscopic preparation. Pure culture upon agar. × 800. Stained with fuchsin.
IX. Bacteria with very numerous flagella. × 1000.
PLATE 32.

Bacterium vulgare β mirabilis (Hauser). L. and N. (Proteus mirabilis Hauser.)

I. Agar stab culture, two days at 22°. Stab canal.
II. Agar stab culture, two days at 22°. Surface growth.
III. Gelatin stab culture, six days at 22°.
IV. Agar streak culture, two days at 22°.
V. Agar plate, seven days at 22°. Natural size.
VI. Agar plate, seven days at 22°. × 60. Above, superficial; below, deep colony.
VII. Gelatin plate, two days at 22°. × 60. Deep colonies.
VIII. Gelatin plate, two days at 22°. × 60. Superficial colony.
IX. Potato culture, eight days at 22°. Natural size.
X. Microscopic preparation. Pure culture on agar two days old. × 800.
Tab. 33.

I.

II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

Lith. Anst. F. Reichhold, München
PLATE 33.

Bacterium erysipelatos suum. Migula.
(Swine Erysipelas.)

I. *Gelatin stab culture*, five days at 22°.

Bacterium murisepticum. Migula. *(Mouse Septicemia.)*

II. *Agar streak culture*, four days at 22°.

III. *Gelatin stab culture*, four days at 22°.

IV. *Agar stab culture*, four days at 22°. Surface growth.

V. *Gelatin plate*, four days at 22°. Natural size.

VI. *Gelatin plate*, four days at 22°. $\times 60$. Superficial colony.

VII. *Agar plate*, four days at 22°. $\times 60$. To the right, superficial; to the left, deep colony.

VIII. *Microscopic preparation*. Pure culture on agar two days old. $\times 800$.

IX. *Microscopic preparation*. Smear preparation from the blood of a mouse's spleen. $\times 800$.
PLATE 34.

Bacillus anthracis. F. Cohn and R. Koch.
(Splenic Fever.)

I–V. Gelatin stab cultures, three days at 22°. Figures I and II are typical; the others, atypical.

VI. Agar streak culture, two days at 22°.

VII. Agar stab culture, five days at 22°. Stab canal.

VIII. Agar stab culture, five days at 22°. Surface growth, which is atypical.

IX. Agar stab culture, five days at 22°. Surface growth typical; often also is homogeneous whitish-gray.
Tab. 34.

I.
II.
III.
IV.
V.
VI.
VII.
VIII.
IX.

Lith. Anst. F. Reichhold, München
PLATE 35.

Bacillus anthracis. F. Cohn and R. Koch.
(Splenic Fever.)

I. Agar plate, four days at 22°. × 60. To the left, a superficial colony; to the right, a colony directly below the surface; below, a deep colony.

II. Agar plate, four days at 22°. Natural size.

III. Agar plate, thirty-six hours at 37°. × 150. Surface growth. Peripheral part of a streak culture.

IV. Agar plate, thirty-six hours at 37°. × 150. Deep colony.

V. Gelatin plate, three days at 22°. Natural size.

VI. Gelatin plate, three days at 22°. × 60. Superficial colony at the time of sinking in.

VII. Potato culture, six days at 22°. Natural size.
PLATE 36.

Bacillus anthracis. F. Cohn and R. Koch.
(Splenic Fever.)

I. Smear preparation from the blood of the spleen of a mouse. $\times 1000$.

II. Contact preparation of an agar plate culture, one day at 22°. $\times 1000$.

III. Unstained preparation in hanging drop from a bouillon culture, thirty-six hours at 37°. $\times 1000$. Spores begin already to escape.

IV. Anthrax threads from agar, thirty-six hours at 37°. $\times 1000$. Stained with Ziehl's solution; spores red, bacilli blue.

V. Involution forms. Five-weeks'-old agar stab culture, stained with fuchsin. $\times 1000$.

VI. Unstained preparation in hanging drop from a bouillon culture, eight hours at 37°. $\times 1000$. Beginning of spore-formation.
PLATE 37.

Bacillus mycoides. Flügge. (Root Bacillus.)

I. Gelatin stab culture, four days at 22°.
II. Gelatin stab culture, fourteen days at 22°.
III. Agar streak culture, two days at 22°.
IV. Agar stab culture, eight days at 22°. Stab canal.
V. Agar stab culture, eight days at 22°. Surface growth.
VI. Gelatin plate, one day at 22°. Natural size.
VII. Agar plate, one day at 22°. Natural size.
VIII. Agar plate, four days at 22°. Natural size.
IX. Gelatin plate, four days at 22°. Natural size. The colony is at the point of sinking in.
PLATE 38.

Bacillus mycoides. Flügge. (Root Bacillus.)

I. Agar plate, one day at 22°. × 20. Superficial and deep colony.

II. Potato culture, seven days at 22°. Natural size.

III. Microscopic preparation. Pure culture, twenty-four hours old, on agar. × 1000. Stained with fuchsins. A few bacilli contain spores.

IV. Agar plate, one day at 22°. × 100. Part of a superficial colony.

Bacillus butyricus. Hüppe. (Butyric Acid Bacillus.)

V. Potato culture, three days at 22°.

VI. Gelatin plate, one day at 22°. × 60. Above, superficial; below, deep colonies.

VII. Gelatin plate, thirty-six hours at 22°. × 60. Part of a superficial colony.

VII A. Flagella preparation. × 1000. Stained according to Löffler.

Bacillus vulgatus. Migula. (B. mesentericus vulgatus Flügge. Potato Bacillus.)

VIII. Potato culture, five days at 22°.

IX. Potato culture, five days at 22°. Natural size. Both forms of growth occur.
PLATE 39.

Bacillus subtilis (Ehrenberg). F. Cohn.
(Hay Bacillus.)

I. Gelatin stab culture, thirty-six hours at 22°.
II. Gelatin stab culture, eight days at 22°.
III. Agar streak culture, two days at 37°.
IV. Agar stab culture, two days at 37°. Stab canal.
V. Agar stab culture, two days at 37°. Surface growth.
VI. Agar plate, twelve hours at 37°. × 60. Superficial colony.
VII. Agar plate, twelve hours at 37°. × 60. Deep colony.
VIII. Agar plate, twelve hours at 37°. Natural size.
PLATE 40.

Bacillus subtilis (Ehrenberg). F. Cohn.
(Hay Bacillus.)

I. _Potato culture_, seven days at 22°.
II. _Gelatin plate_, two days at 22°. \(\times 60 \). Above and to the left, a deep colony; below this, one lying directly at the surface; to the right, a superficial colony.
III. _Gelatin plate_, two days at 22°. Natural size.
IV. _Gelatin plate_, two days at 22°. \(\times 10 \).
V. _Microscopic preparation_. \(\times 1000 \). From an agar culture three hours old at 37°, stained with fuchsin.
VII. _Microscopic preparation_. \(\times 1000 \). From an agar culture, ten days at 22°. Contains spores. Unstained.
VIII. _Microscopic preparation_. \(\times 700 \). From an agar culture, ten days at 22°. Double stain with carbol-fuchsin and methylene-blue.
IX. Bacilli with numerous flagella. \(\times 1000 \). Stained according to Löfler.
Tab. 40.
PLATE 41.

Bacillus megatherium. De Bary.

I. Gelatin stab culture, twenty-four hours at 22°.
II. Agar streak culture, three days at 22°.
III. Gelatin plate, thirty-six hours at 22°. Natural size.
IV. Gelatin plate, thirty-six hours at 22°. × 60. Deep colony.
V. Gelatin plate, thirty-six hours at 22°. × 60. Superficial colony.
VI. Agar plate, four days at 22°. Natural size.
VII. Agar plate, one day at 22°. × 60. To the right, superficial; to the left, deep colonies.
VIII. Agar plate, four days at 22°. × 60. To the right, deep; to the left, superficial colonies.
IX. Potato culture, five days at 22°. Natural size.
X. Microscopic preparation. Pure culture on agar. × 800.
XI. Bacilli with numerous flagella. × 1000. Stained according to Löffler.
Bacillus vulgatus. Migula. (B. mesentericus vulgatus Flügge. Potato Bacillus.)

I. Gelatin stab culture, ten days at 22°.
II. Agar streak culture, ten days at 22°.
III. Agar stab culture, six days at 22°. Surface growth.
IV. Agar plate, six days at 22°. Natural size.
V. Agar plate, six days at 22°. × 60. Deep colonies.
VI. Agar plate, six days at 22°. × 60. Superficial colony.
VII. Gelatin plate, eight days at 22°. Natural size.
VIII. Gelatin plate, eight days at 22°. × 60. Part of a superficial colony.
IX. Gelatin plate, eight days at 22°. × 150. Part of a superficial colony.
X. Potato culture, five days at 22°. Natural size.
XI. Microscopic preparation. Pure culture from agar, one day old. × 800. Stained with fuchsin.
XII. Bacilli with numerous flagella. × 1000. Stained according to Löffler.

XII.
PLATE 43.

Bacillus mesentericus. Lehm. and Neum. (B. mesentericus fuscus Flügge.)

I. Gelatin stab culture, two days at 22°.
II. Agar streak culture, three days at 22°.
III. Potato culture, one day at 22°. Natural size.
IV. Potato culture, five days at 22°. Natural size.
V. Agar plate, two days at 22°. Natural size.
VI. Agar stab culture, four days at 22°. Surface growth.
VII. Agar plate, two days at 22°. × 60. Above, superficial; below, deep colonies.
VIII. Gelatin plate, thirty-six hours at 22°. × 60. Deep colonies.
IX. Gelatin plate, thirty-six hours at 22°. × 60. Superficial colony.
X. Gelatin plate, two days at 22°. Natural size.
XI. Gelatin plate, one day at 22°. × 60. To the right, deep; to the left, superficial colonies.
XII. Microscopic preparation. × 800. From a pure culture on agar two days old. Stained with fuchsin. Some bacilli contain spores.
XIII. Bacilli with numerous flagella. × 1000. Stained by Löfler's method.
Bacillus tetani. Nicolaier. (Tetanus Bacillus.)

I. Sugar-agar stab culture, three days at 37°.
II. Sugar-gelatin stab culture, six days at 22°.
III. Sugar-gelatin plate, four days at 22°. Grown without air.
IV. Sugar-gelatin plate, four days at 22°. × 60. Natural size. Superficial and deep colonies. Grown without air.
V. Sugar-agar plate, four days at 37°. Natural size. Grown without air.
VI. Sugar-agar plate, four days at 37°. × 60. Superficial and deep colonies. Grown without air.
VII. Microscopic preparation. Pure culture on sugar-agar, three days at 37°. × 1000. Bacilli with spores. Double staining according to Ziehl.
VIII. Microscopic preparation. Pure culture on sugar-agar, two days at 37°. × 1000. Some bacilli contain spores. Stained with fuchsin.
IX. Microscopic preparation. Pure culture on sugar-agar, twenty-four hours at 37°. × 1000. Extremely long threads with faintly stained intervals.
X. Microscopic preparation. Pure culture on sugar-agar, six days at 37°. × 1000. Stained with fuchsin. Long threads and chains of spores with faintly stained intervals.
PLATE 45.

Bacillus Chauvœi. Macé. (Symptomatic Anthrax.)

I. *Sugar-gelatin stab culture*, six days at 22°.
II. *Sugar-agar stab culture*, three days at 37°.
III. *Sugar-agar stab culture*, three weeks at 37°.
IV. *Sugar-agar plate*, four days at 37°. Natural size. Grown as anaerobe.

V. *Sugar-agar plate*, four days at 37°. × 60. Superficial and deep colony. Grown as anaerobe.

VI. *Sugar-gelatin plate*, four days at 22°. Natural size. Grown as anaerobe.

VII. *Sugar-gelatin plate*, four days at 22°. × 60. Deep colony, grown as anaerobe.

VIII. *Sugar-gelatin plate*, two days at 22°. × 150. Part of a superficial colony. Grown as anaerobe.

IX. *Microscopic preparation*. Pure culture on sugar-agar, three days at 37°. × 1000. Bacilli with spores and free spores. Stained with fuchsin.
PLATE 46.

Bacillus oedematis maligni. Koch. (Malignant Edema.)

I. *Sugar-agar stab culture*, eight days at 37°.

III. *Microscopic preparation*. Bacilli with flagella. Pure culture on agar, twenty-four hours old. \times 1000. Stained according to Löffler.

IV. *Sugar-agar plate*, four days at 22°. \times 60. Part of a superficial colony.

V. *Sugar agar plate*, six days at 22°. Natural size.

VI. *Microscopic preparation*. Pure culture on agar, two days old at 37°. Bacilli with spores. \times 1000. Stained with fuchsin.

PLATE 47.

Vibrio cholerae. (Koch.) Buchner. (Comma Bacillus.)

I. Gelatin stab culture, two days at 22°.
II. Gelatin stab culture, seven days at 22°.
III. Gelatin stab culture, eight days at 22°. Culture from a case of cholera asiatica in Hanover.
IV. Gelatin stab culture, eight days at 22°.
V. Agar streak culture, eleven days at 22°.
VI. Agar stab culture, eight days at 22°. Stab canal.
VII. Agar stab culture, eight days at 22°. Surface growth.
VIII. Agar plate, six days at 22°. Natural size.
IX. Agar plate, six days at 22°. Culture from a case of cholera asiatica in Hanover.
PLATE 48.

Vibrio cholerae. (Koch.) Buchner. (Comma Bacillus.)

I. Agar plate, thirty-six hours at 22°. × 60. To the left superficial, to the right deep colonies.

II. Agar plate, two days at 22°. × 60. To the left superficial, to the right deep colonies.

III. Agar plate, three days at 22°. × 60. To the left superficial, to the right deep colonies.

IV. Agar plate, three weeks at 22°. × 60. To the left superficial, to the right deep colonies.

V. Agar plate, five days at 22°. × 60. Colonies of a culture of cholera asiatica from Hanover. Superficial and deep colonies.

VI. Gelatin plate, four days at 22°. Natural size. Deeply sunken funnels of liquefaction.

VII. Gelatin plate, fourteen days at 22°. Natural size. Colony with a pronounced formation of zones.

VIII. Gelatin plate, four days at 22°. Shallow zones of liquefaction.

IX. Gelatin plate, six days at 22°. Superficial sinking in of colonies with concentric zones of liquefaction.
PLATE 49.

Vibrio cholerae. (Koch.) Buchner. (Comma Bacillus.)

I. Gelatin plate, thirty-six hours at 22°. × 60. Deep and superficial colonies.

II. Gelatin plate, forty-eight hours at 22°. × 60. To the left superficial, to the right deep colonies.

III. Gelatin plate, three days at 22°. × 60. Superficial colonies with zone of liquefaction.

IV. Gelatin plate, three days at 22°. × 60. Deep colonies.

V. Gelatin plate, four days at 22°. × 60. Superficial colony with zone of liquefaction.

VI. Gelatin plate, four days at 22°. × 60. Deep colony.

VII. Gelatin plate, five days at 22°. × 60. Deep colony from a culture of cholera from Hanover.

VIII. Gelatin plate, five days at 22°. × 60. Superficial colony. Complete liquefaction has already taken place.

IX. Gelatin plate, eight days at 22°. × 60. Superficial colony with zone of liquefaction.
PLATE 50.

Vibrio cholerae. (Koch.) Buchner. (Comma Bacillus.)

I. Gelatin plate, five days at 22°. × 60. Abnormal form of superficial colony.

II. Gelatin plate, five days at 22°. × 90. Abnormal form of superficial colony.

III. Gelatin plate, five days at 22°. × 60. Deeply sunken superficial colony with a strongly reflecting zone of liquefaction.

IV. Gelatin plate, six days at 22°. × 60. Abnormal superficial colony, with dense nucleus, evenly sunken in and with a zone of liquefaction.

V. Gelatin plate, six days at 22°. × 60. Abnormal deep colony, without halo, dark, with radiating striations, from the same plate as IV.

VI. Potato culture, two days at 22°. Natural size. Soaked in soda solution before inoculation.

VII. Potato culture, five days at 22°. Inoculated upon ordinary potato.
PLATE 51.

Vibrio cholerae. (Koch.) Buchner. (Comma Bacillus.)

I. *Pure culture in bouillon,* twenty-four hours at 37°. Stained with fuchsin. × 1000.

II. *Pure culture on agar,* twenty-four hours. × 1000. Flagella staining according to Löffler.

III. *Pure culture on gelatin,* forty-eight hours. Very fresh from water. (Copied from Fränkel and Pfeiffer, Fig. 94.)

IV. *Pure culture on agar,* four weeks' old. Involution forms, stained with fuchsin.

V. **Vibrio Metschnikovii** Gamaleia. *Smear preparation from pigeon's blood.* (Copied after Fränkel and Pfeiffer, Fig. 102.)

VI. **Vibrio Proteus** Buchner. *Pure culture in bouillon,* twenty-four hours. Stained with fuchsin.
PLATE 52.

Vibrio proteus. Buchner. (Vibrio Finkler.)

I. Gelatin stab culture, one day at 22°.
II. Gelatin stab culture, four days at 22°.
III. Gelatin plate, one day at 22°. Natural size.
IV. Gelatin plate, four days at 22°. \(\times 60. \) Superficial colony.
V. Gelatin plate, four days at 22°. \(\times 60. \) Deep colony.
VI. Agar streak culture, six days at 22°.
VII. Agar plate, four days at 22°. \(\times 60. \) Superficial colony.
VIII. Agar plate, four days at 22°. \(\times 60. \) Deep colony.
IX. Agar plate, four days at 22°. Natural size.
PLATE 53.

I. *Vibrio danubicus*: Gelatin stab culture, three days at 22°.

II. *Vibrio aquatilis*: Gelatin stab culture, three days at 22°.

III. *Vibrio danubicus*: Gelatin plate, three days at 22°. × 60. To the right superficial, to the left deep colony.

IV. *Vibrio danubicus*: Microscopic preparation. Pure culture on agar, twenty-four hours. Stained with fuchsin. × 800.

V. *Vibrio berolinensis*: Gelatin plate, three days at 22°. × 60. To the right superficial, to the left deep colony.

VI. *Vibrio berolinensis*: Microscopic preparation. Pure culture from agar, twenty-four hours. × 800. Stained with fuchsin.

VII. *Vibrio aquatilis*: Gelatin plate, three days at 22°. × 60. Deep colonies, swarming outward from one point forming secondary ones.

VIII. *Vibrio aquatilis*: Microscopic preparation. Pure culture on agar, twenty-four hours at 22°. × 800. Stained with fuchsin.

IX. *Vibrio aquatilis*: Gelatin plate, three days at 22°. × 60. To the right superficial, to the left deep colony.
PLATE 54.

Vibrio albensis. Lehm. and Neum. (Phosphorescent Elbe Vibrio.)

I. *Gelatin stab culture,* twenty-four hours at 22°.

II. *Gelatin stab culture,* four days at 22°.

III. *Gelatin stab culture,* ten days at 22°.

IV. *Indol reaction* after ten days. Bouillon culture with dilute sulphuric acid, warmed.

V. *Gelatin plate,* three days at 22°. × 60. Superficial colony.

VI. *Gelatin plate,* three days at 22°. × 60. Deep colonies.

VII. *Gelatin plate,* thirty-six hours at 22°. Natural size.

VIII. *Microscopic preparation.* Pure culture from agar, forty-eight hours. Stained with fuchsine.
PLATE 55.

Spirillum rubrum. Von Esmarch.

I. Agar stab culture, ten days at 22°.
II. Agar streak culture, twenty days at 22°.
III. Agar plate, five days at 22°. × 60. (e) Superficial, (i) deep colonies.
IV. Gelatin plate, seven days at 22°. × 60. (e) Superficial, (i) deep colonies.
V. Microscopic preparation. Pure culture from bouillon, diluted ten times; two days at 37°. × 1000. Stained with fuchsin.
V A. Flagella preparation of spirillum rubrum. × 1000. Stained according to Löffler.

V A.

Spirillum concentricum. Kitasato.

VI. Agar plate, seven days at 22°. × 60. (e) Superficial, (i) deep colonies.
VII. Gelatin plate, three days at 22°. × 60. (e) Superficial, (i) deep colonies.
VIII. Agar plate, seven days at 22°. Natural size.
IX. Microscopic preparation. Pure culture in bouillon, two days at 37°. × 1000. Stained with fuchsin.
PLATE 56.

Spirilla.

II. *Spirilla from Nasal Mucus*. Smear preparation with two cells. × about 1000. Copied after Weibel (C. B. ii, p. 468, Fig. 1).

III. *Spirilla from Nasal Mucus*. Agar plate. Pure culture. × about 1000. (Copied C. B. ii, p. 468, Fig. 2.)

IV. *Spirilla from Nasal Mucus*. Gelatin plate. Pure culture. × about 1000. (Copied C. B. ii, p. 468, Fig. 3.)

V. *Spirillum undula* Müller. With flagella. × about 800. Copied after Lößfler (C. B. vi, Taf. i, Fig. 2).

VI. *Vibrio spermatozoides* Lößfler. × about 1000. Copied after Lößfler (C. B. vii, Taf. iii, Fig. 7).

VII. *Spirochæte from Mucus of the Mouth*. (Copied after Lößfler: Bakterien, Taf. i, Fig. 4.)

VIII. *Spirochæte Obermeieri* Cohn. Smear preparation from human blood. (Copied after Fränkel and Pfeiffer, Atlas, No. 134.)

IX. *Spirilla of relapsing fever*. Human blood. Spirilla grouped in the form of a star. (Copied after M. J. Sou- dakewitsch: Annales de l’instit. Pasteur, Bd. v, 1891, p. 514, plate 14, Fig. 1.)
PLATE 57.

Corynebacterium mallei. (Löfller.) L. and N. (Glanders.)

I. Gelatin stab culture, six days at 22°.
II. Agar streak culture, six days at 37°. The central whitish streak is not always so pronounced.
III. Agar stab culture, three days at 37°. Stab canal.
IV. Agar stab culture, three days at 37°. Surface growth.
V. Gelatin plate, five days at 22°. Natural size.
VI. Microscopic preparation. Pure culture. × 800. Stained with fuchsin.
VII. Agar plate, two days at 22°. × 60. Upper, superficial; lower, deep colonies.
VIII. Gelatin plate, four days at 22°. × 60. Upper colony superficial, lower ones deep.
IX. Potato culture, two days at 37°.
X. Potato culture, twenty days at 37°.
XI. Single bacteria. Highly magnified. In many places the stain is taken poorly or not at all.

XI.

XII.
PLATE 58.

Corynebacterium diphtheriae. (Klebs, Löffler.) L. and N.

Corynebacterium pseudodiphtheriticum. (Hofmann-Wellenhof.) Lehm. and Neum.

Corynebacterium xerosis. (Kuschbert, Neisser.) Lehm. and Neum.

I. Coryneb. diphtheriae. Glycerin-agar streak culture, three days at 37°. Luxuriant growth; culture moist.
II. Coryneb. diphtheriae. Glycerin-agar streak culture, three days at 37°. Delicate growth.
III. Coryneb. pseudodiphtherit. Glycerin-agar streak culture, three days at 37°. Luxuriant growth, culture moist.
IV. Coryneb. xerosis. Glycerin-agar streak culture, three days at 37°. Delicate growth; growth dry and dull.
V. Coryneb. pseudodiphtherit. Glycerin-agar stab culture. Surface growth, ten days at 37°. The culture is reproduced on account of its atypical brown color.
VI. Coryneb. diphtheriae. Gelatin stab culture. Surface growth, ten days at 22°. The color fluctuates from white to dirty yellowish.

VII. Coryneb. diphtheriae:
\[\begin{align*}
\text{Natural size.} & \quad \text{(a) Glycerin-agar plate. Colonies upon the surface, three days at 37°. Luxuriant growth. The same culture as I.} \\
& \quad \text{(b) Glycerin-agar plate. Colonies upon the surface, three days at 37°. Delicate growth. The same culture as II.} \\
\end{align*} \]

VIII a. Coryneb. pseudodiphtherit. Glycerin-agar plate. Colonies lying upon the surface, three days at 37°. Natural size. Luxuriant growth. Answers to culture III.

VIII b. Coryneb. xerosis. Glycerin-agar plate. Colonies lying upon the surface, three days at 37°. Natural size. Dry, dull growth. Answers to culture IV.

VIII c. Coryneb. xerosis. Glycerin-agar plate. Colonies lying upon the surface, three days at 37°. Natural size. Delicate growth. Sometimes it may be still more delicate.

IX. Coryneb. diphtheriae. Potato culture, ten days at 22°. The growth is typical, like a delicate veil, which in many places leaves no trace on the potato.

X. Coryneb. pseudodiphtherit. Potato culture, ten days at 22°. The growth is sharply outlined, white to dirty yellowish.
Corynebacterium diphtheriae. (Klebs, Löffler.)
L. and N.

Corynebacterium pseudodiphtheriticum. (Hofmann-Wellenhof.) Lehm. and Neum.

Corynebacterium xerosis. (Kuschbert, Neisser.) Lehm. and Neum.

I. Coryneb. diphtheriae. Plate cultures (Ascites-fluid-agar and glycerin-agar). × 60. Superficial colonies, twenty-four hours at 37°. Cultures of different origin.

II. Coryneb. diphtheriae. Plate culture (glycerin-agar). × 60. Superficial colonies, forty-eight hours at 37°. The same culture as I, g, h.

III. Coryneb. diphtheriae. Plate culture (ascites-fluid-agar). × 60. Superficial colony, five days at 37°. The same culture as I, c, e, and Plate 58, ii.

IV. Coryneb. pseudodiphtherit. Plate culture (glycerin-agar). × 60. Superficial colonies, forty-eight hours at 37°. The same culture as Plate 58, iii.

V. Coryneb. xerosis. Plate culture (glycerin-agar). × 60. Superficial colony, forty-eight hours, at 37°. Dry, dull, and very opaque. The same culture as Plate 58, iv, viii b.

VI. Coryneb. diphtheriae. Plate culture (ascites-fluid-agar). × 60. Superficial colonies, forty-eight hours at 37°. The same culture as I, f, l, and Plate 58, i, vii a.

VII. Coryneb. diphtheriae. Plate culture. The same as VI, but ten days old.

VIII. Coryneb. xerosis. Plate culture (glycerin-agar). × 60. Superficial colonies, forty-eight hours at 37°. The same culture as Plate 58, viii c.
PLATE 60.

Corynebacterium diphtheriae (Klebs, Löffler). L. and N.
Corynebacterium pseudodiphtheriticum. (Hofmann-Wellenhof.) Lehm. and Neum.
Corynebacterium xerosis (Kuschbert, Neisser). Lehm. and Neum.

I. Corynebacterium diphtheriae. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin. Corresponds to Plate 58, II, VII b; and Plate 59, II.

II. Corynebacterium diphtheriae. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin. Corresponds to Plate 58, I, VII a; and Plate 59, VI.

III. Corynebacterium diphtheriae. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin.

IV. Corynebacterium diphtheriae. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin.

V. Corynebacterium pseudodiphtheriticum. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin.

VI. Corynebacterium pseudodiphtheriticum. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin. Corresponds to Plate 58, III, VIII a; Plate 59, I, IV.

VII. Corynebacterium xerosis. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin. Corresponds to Plate 58, IV, VIII b; and Plate 59, V.

VIII. Corynebacterium xerosis. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin.

IX. Corynebacterium xerosis. *Glycerin-agar*, forty-eight hours at 37°. × 1000. Stained with fuchsin. Corresponds to Plate 58, VIII c.

X. Corynebacterium diphtheriae. *Bovine blood-serum*, solidified at 100°, eighteen hours at 35°. × 1000. Staining of Neisser’s granules. The polar staining is characteristic. Corresponds to figure I.

XI. Corynebacterium pseudodiphtheriticum. *Bovine blood-serum*, solidified at 100°, eighteen hours at 35°. × 1000. Staining of Neisser’s granules. These occur also in many varieties of pseudodiphtheria, but not with such regularity at both poles.

XII. Corynebacterium diphtheriae. *Glycerin-agar*, four days at 37°. × 1000. Stained with fuchsin. True branching.

XIII. Corynebacterium diphtheriae. Single organisms, highly magnified, schematic.
Tab. 61.

I.
II.
III.
IV.
V.
VI.
VII.
VIII.
IX.
PLATE 61.

Mycobacterium tuberculosis (Koch). Lehm. and Neum. (Tubercle Bacillus.)

I. Glycerin-agar streak culture, fourteen days at 37°.
II. Glycerin-agar streak culture, forty days at 37°.
III. Potato culture, forty days at 37°.
IV. Colonies of tubercle bacilli from a blood-serum culture. × 700. (Copied after R. Koch, Aetiologie der Tuberkulose. Mitteilungen des Kaiserl. Gesundheitsamt, Bd. 2, Taf. ix, 44.)

V. Culture, upon blood-serum, from a piece of a freshly extirpated scrofulous gland. (Copied like the above, Bd. 2, Taf. ix, 44.)

VI. Giant cell with radially arranged bacilli. From a caseous bronchial gland in a case of miliary tuberculosis. (Copied like above, Bd. 2, Taf. ii, 9.)

VII. Microscopic preparation. Pure culture, stained according to Ziehl. × 1000.

VIII. Branching of tubercle bacilli. (Copied after Hayo Bruns, C. B. xvii, No. 23.)

IX. Microscopic preparation. Sputum, stained according to Ziehl. × 1000.

X. Single bacteria, highly magnified.
PLATE 62.

Mycobacterium leprae. (Arm. Hansen.) Lehm. and Neum.

I. *Giant cell from a leprous ulcer of the epiglottis.* × about 1000. Stained according to Rusell. (Copied from Seifert and Kahn, Atlas der Histopathologie der Nase, 1875, Taf. 38, Fig. 75 b.)

II. *Transverse section of a blood-vessel in a leprous testicle.* Bacilli in endothelium and in a white blood-corpuscle. Stained by Gram’s method, Bismarck brown, eosin, oil of bergamot. × about 1000. (Copied as No. iii, fig. v.)

III. *Ulnar nerve, longitudinal section,* stained like above. (Copied from Lie, pathologische Anatomie der Lepra; Archiv für Dermatologie und Syphilis, Bd. xxix, 1895, Taf. vi, Fig. vii.)

IV. *Smear preparation from nasal mucus.* Stained by method for tubercle bacillus. From a preparation of Dr. Dieudonné. × 1000.

Mycobacterium tuberculosis γ piscicola. L. and N.

V. *Streak culture* (glycerin-agar), one month old at 22°.

VI. *Plate culture* (glycerin-agar), ten days at 22°. Natural size. Superficial colonies.

VII. *Plate culture* (glycerin-agar), six days at 22°. × 60. Superficial colony. The dark shadows and bright lights represent the strong reflection of the cartilaginous colony.

VIII. *Potato culture,* fourteen days at 22°. Sometimes also more homogeneous upon the surface.

IX. *Microscopic preparation.* Stained by the method for the tubercle bacillus. × 1000.
PLATE 63.

Mycobacterium lacticola β perrugosum. L. and N.

I. Streak culture (glycerin-agar), two months old; three days at 37°, then at 22°. Much elevated and wrinkled.

II. Plate culture (glycerin-agar), six days at 37°. × 60. Superficial colony.

III. Plate culture (glycerin-agar), forty-eight hours at 37°. × 60. Superficial colony.

IV. Plate culture (glycerin-agar), three days at 37°. Natural size. Superficial colonies. Later the same were larger, more wrinkled, and reddish.

V. Potato culture, six days at 22°. Later the same became still more wrinkled.

VI. Microscopic preparation. Glycerin-agar: (a) Three days at 37°. × 1000. Stained with fuchsin. (b) Two months at 22°. × 1000. Stained with fuchsin.

VII. Microscopic preparation. Smear from the peritoneal fluid of a guinea-pig, inoculated with butter. × 1000. Stained with tubercle bacillus stain. (From a preparation of Dr. Dieudonné.)

Mycobacterium phlei. Lehm. and Neum.

VIII. Streak culture (glycerin-agar), eight days at 22°. The culture at first is pale orange; later, it becomes darker and wrinkled.

IX. Plate culture (glycerin-agar), three days at 22°. × 60. Superficial colony.

X. Plate culture (glycerin-agar), eight days at 22°. × 60. Superficial colony.

XI. Plate culture (glycerin-agar), eight days at 22°. Natural size. Superficial colonies.

XII. Microscopic preparation. Glycerin-agar: (a) Three days at 37°. × 1000. Stained with fuchsin. (b) Two months at 22°. × 1000. Stained with fuchsin.
PLATE 64.

Mycobacterium lacticola a planum. L. and N.

I. *Streak culture* (ordinary agar), two months at 22°.
II. *Streak culture* (glycerin-agar), six days at 37°.
III. *Streak culture* (glycerin-agar), three months at 22°. The culture at first is whitish; later, it becomes very intensely orange-red.
IV. *Streak culture* (gelatin), six days at 22°.
V. *Potato culture*, six days at 22°. Its appearance varies widely. Sometimes it is lighter, sometimes darker, sometimes moister, sometimes drier, sometimes smooth, sometimes wrinkled.
VI. *Plate culture* (gelatin), six days at 22°. × 60. (a) Superficial colony, resembling the colon; (b) deep colony.
VII. *Plate culture* (gelatin), six days at 22°. Natural size.
VIII. *Plate culture* (glycerin-agar), three days at 37°. × 60. Superficial colony.
IX. *Plate culture* (glycerin-agar), three days at 37°. Natural size.
X. **Microscopic preparation.** Glycerin-agar, three days. × 1000. Stained with fuchsin. The size of the rods scarcely varies in very old cultures. There as here are found small and large, slender and thick rods.
PLATE 65.

Actinomyces bovis. Harz.

I. Agar streak culture, six days at 37°.
II. Agar streak culture, thirty days at 37°.
III. Gelatin stab culture, fourteen days at 22°.
IV. Gelatin plate, six days at 22°. Natural size.
V. Agar plate, six days at 37°. Natural size.
VI. Agar plate, six days at 37°. × 60. Superficial and deep colony.
VII. Gelatin plate, six days at 22°. × 60. Superficial and deep colony.
VIII. Potato culture, ten days at 37°. Natural size.
IX. Microscopic preparation. Pure culture in bouillon, three days at 37°. × 1000. Stained with fuchsin.
PLATE 66.

Actinomyces farcinicus. (Nocard.) Gasperini.
(Farcin du bœuf.)

I. *Agar streak culture*, eight days at 22°.
II. *Gelatin stab culture*, twelve days at 22°.
III. *Agar stab culture*, eight days at 22°. Stab canal.
IV. *Agar stab culture*, eight days at 22°. Surface growth.
V. *Gelatin plate*, ten days at 22°. Natural size.
VI. *Gelatin plate*, ten days at 22°. × 60. Superficial and deep colonies which are similar.
VII. *Agar plate*, six days at 22°. Natural size.
VIII. *Agar plate*, eight days at 22°. Upper colony superficial, lower ones deep.
IX. *Potato culture*, seven days at 22°. Natural size.
X. *Microscopic preparation*. Pure culture in bouillon, two days. × 800. Stained with fuchsin.
PLATE 67.

Actinomyces chromogenes. Gasperini.

I. Gelatin stab culture, six days at 22°.
II. Agar streak culture, six days at 22°.
III. Agar stab culture, six days at 22°. Stab canal.
IV. Agar stab culture, six days at 22°. Surface growth.
V. Gelatin plate, eight days at 22°. Natural size. Appearance upon white background.
VI. Gelatin plate, eight days at 22°. Natural size. Appearance upon dark background.
VII. Gelatin plate, eight days at 22°. × 60. Part of a superficial colony.
VIII. Agar plate, four days at 22°. × 60. Superficial and deep colony.
IX. Potato culture, three days at 22°. Natural size.
X. Microscopic preparation. Pure culture in bouillon, three days at 22°. × about 1000. Stained with fuchsin.
PLATE 68.

Varia.

I. Bacterium tussis convulsivæ L. and N. From mucus, coughed up by a child with whooping-cough. × 1000. Ordinary fuchsin stain.

II. Bact. ulceris cancrosi (Kruse) L. and N. Section of an untreated soft ulcer of twelve days' duration. Stained according to Unna. (Copied from Peterson, über Bacillenfund bei Ulcus molle, C. B. xiii, Tafel 4.)

III. Streptococcus meningitidis cerebrospinalis (Weichselbaum). Lehm. and Neum. Smear preparation from meningeal exudate. Pus cells with flattened diplococci. (Copied after Jäger, Zeitschrift für Hygiene, Bd. 19, Tafel vi, Fig. 3.) × 1000.

IV. Streptococcus meningitidis cerebrospinalis. Pure culture, grown from cerebrospinal fluid. × 1000.

V. Bacterium influenzæ (R. Pfeiffer) Lehm. and Neum. Smear preparation from nasal secretion. × 1000. Stained with fuchsin.

Bacillus gangränæ pulpæ. Arkövy.

VI. Gelatin stab culture, ten days at 22°. The little hairs along the stab canal often become much longer.

VII. Agar plate, three days at 37°. Natural size. Superficial colonies.

VIII. Potato culture, ten days at 22°. The wrinkling of the surface suggests the culture of the mesentericus.

PLATE 69.

Leptothrix epidermidis. Biz.

I. Gelatin stab culture, two days at 22°.
II. Agar streak culture, two days at 22°.
III. Agar stab culture, two days at 22°. Stab canal.
IV. Agar stab culture, two days at 22°. Surface growth.
V. Agar plate, two days at 22°. Natural size.
VI. Agar plate, two days at 22°. × 90. Part of a superficial colony.
VII. Agar plate, two days at 22°. × 90. Deep colony.
VIII. Gelatin plate, two days at 22°. Natural size.
IX. Gelatin plate, one day at 22°: (e) Superficial, (i) deep colony.
X. Potato culture, three days at 22°. Natural size.
XI. Microscopic preparation. Pure culture on agar, two days at 22°. × 1000. Stained with fuchsin.
XII. Microscopic preparation. Bouillon culture in hanging drop, two days at 22°. × about 1000.
SAUNDERS' MEDICAL HAND-ATLASES

A SERIES OF BOOKS OFFERING
A SATISFACTORY SUBSTITUTE FOR ACTUAL CLINICAL WORK

SPECIAL OFFER

As it is impossible to realize the beauty and cheapness of these atlases without an opportunity to examine them, we make the following offer: Any one of these books will be sent to physicians, carriage prepaid, upon request. If you want the book, you have merely to remit the price; if not, return the book by mail.

A Descriptive Catalogue of all our Publications Sent on Request

W. B. SAUNDERS COMPANY
925 Walnut Street
Philadelphia

LONDON: 9, Henrietta Street, Covent Garden
SAUNDERS' MEDICAL HAND-ATLASES

IN planning this series of books arrangements were made with representative publishers in the chief medical centers of the world for the publication of translations of the atlases in thirteen different languages, the lithographic plates for all being made in Germany, where work of this kind has been brought to the greatest perfection. The enormous expense of making the plates being shared by the various publishers, the cost to each one was reduced approximately to one-tenth.

Thus, by reason of their universal translation and reproduction, affording international distribution, the publishers have been enabled to secure for these atlases the best artistic and professional talent, to produce them in the most elegant style, and yet to offer them at a price heretofore unapproached in cheapness.

One of the most valuable features of these atlases is that they offer a ready and satisfactory substitute for clinical observation. Such observation, of course, is available only to the residents in large medical centers; and even then the requisite variety is seen only after long years of routine hospital work. To those unable to attend important clinics these books will be absolutely indispensable, as presenting in a complete and convenient form the most accurate reproductions of clinical work, interpreted by the most competent of clinical teachers.

As an indication of the great practical value of the atlases and of the immense favor with which they have been received, it should be noted that the Medical Department of the U. S. Army has adopted the "Atlas of Operative Surgery" as its standard, and has ordered the book in large quantities for distribution to the various regiments and army posts.
Preiswerk and Warren's Dentistry

JUST READY

Preiswerk's atlas will be found invaluable to the practicing dentist, for the numerous excellent lithographs make very easy of comprehension those procedures that would be but imperfectly understood from description alone. The text, nevertheless, is unusually complete, and the translation into English has been done with great fidelity and smoothness. The editor, Dr. George W. Warren, has added much new matter.

Hecker, Trumpp, and Abt on Children

READY SOON

It is a recognized fact that the Germans lead the world in the treatment of children's diseases, and this magnificent atlas fully maintains this reputation. The lithographic plates are wonderfully accurate, and the accompanying text is particularly full on treatment. Dr. Isaac Abt, the editor, has greatly improved the work by the addition of all the latest methods of treatment and diagnosis.

Each volume contains from 50 to 100 colored plates
Zuckerkandl and DaCosta's Operative Surgery
Second Edition, Revised and Greatly Enlarged

ADOPTED BY THE U. S. ARMY

In this new edition the work has been brought precisely down to date. The revision has not been casual, but thorough and exhaustive, the entire text having been subjected to a careful scrutiny, and many improvements and additions made. A number of chapters have been practically rewritten, and of the newer operations, all those of special value have been described. The number of illustrations has also been materially increased. Sixteen valuable lithographic plates in colors and sixty-one text-figures have been added, thus greatly enhancing the value of the work. There is no doubt that the volume in its new edition will still maintain its leading position as a substitute for clinical instruction.

OPINIONS OF THE MEDICAL PRESS

Philadelphia Medical Journal

"The names of Zuckerkandl and DaCosta, the fact that the book has been translated into 13 different languages, together with the knowledge that it is used in the United States Army and Navy, would be sufficient recommendation for most of us."

Munchener Medicinische Wochenschrift

"We know of no other work that combines such a wealth of beautiful illustrations with clearness and conciseness of language, that is so entirely abreast of the latest achievements, and so useful both for the beginner and for one who wishes to increase his knowledge of operative surgery."

Each volume is edited, with additions, by a leading specialist
Helferich and Bloodgood's Fractures and Dislocations

Atlas and Epitome of Traumatic Fractures and Dislocations. By Professor Dr. H. Helferich, Professor of Surgery at the Royal University, Greifswald, Prussia. Edited, with additions, by Joseph C. Bloodgood, M. D., Associate in Surgery, Johns Hopkins University, Baltimore. From the Fifth Revised and Enlarged German Edition. With 216 colored illustrations on 64 lithographic plates, 190 text-cuts, and 353 pages of text. Cloth, $3.00 net.

SHOWING DEFORMITY, X-RAY SHADOW, AND TREATMENT

This department of medicine being one in which, from lack of practical knowledge, much harm can be done, and in which in recent years great importance has obtained, a book, accurately portraying the anatomic relations of the fractured parts, together with the diagnosis and treatment of the condition, becomes an absolute necessity. This present work fully meets all requirements. As complete a view as possible of each case has been presented, thus equipping the physician for the manifold appearances that he will meet with in practice. The illustrations show the visible external deformity, the X-ray shadow, the anatomic preparation, and the method of treatment.

OPINIONS OF THE MEDICAL PRESS

Medical News, New York

"This compact and exceedingly attractive little volume will be most welcome to all who are interested in the practical application of anatomy. The author and editor have made a most successful effort to arrange the illustrations that the interpretation of what they are intended to present is exceedingly easy."

Brooklyn Medical Journal

"There are few books published that better answer the requirements for illustration than this work of Professor Helferich. . . . Such a collection of illustrations must be the result of much labor and thought."

They are Satisfactory Substitutes for Clinical Observation
Sultan and Coley's Abdominal Hernias

DEALING WITH THE SURGICAL ASPECT

This new atlas covers one of the most important subjects in the entire domain of medical teaching, since these hernias are not only exceedingly common, but the frequent occurrence of strangulation demands extraordinarily quick and energetic surgical intervention. During the last decade the operative side of this subject has been steadily growing in importance, until now it is absolutely essential to have a book treating of its surgical aspect. This present atlas does this to an admirable degree. The illustrations are not only very numerous, but they excel, in the accuracy of the portrayal of the conditions represented, those of any other work upon abdominal hernias with which we are familiar. The work will be found a worthy exponent of our present knowledge of the subject of which it treats.

PERSONAL AND PRESS OPINIONS

Robert H. M. Dawbarn, M. D.,
Professor of Surgery and Surgical Anatomy, New York Polyclinic.

"I have spent several interested hours over it to-day, and shall willingly recommend it to my classes at the Polyclinic College and elsewhere."

Boston Medical and Surgical Journal

"For the general practitioner and the surgeon it will be a very useful book for reference. The book's value is increased by the editorial notes of Dr. Coley."

They have already appeared in thirteen different languages
Brühl, Politzer, and MacCuen Smith's Otology

Atlas and Epitome of Otology. By Gustav Brühl, M. D., of Berlin, with the collaboration of Professor Dr. A. Politzer, of Vienna. Edited, with additions, by S. MacCuen Smith, M. D., Professor of Otology in the Jefferson Medical College, Philadelphia. With 244 colored figures on 39 lithographic plates, 99 text-illustrations, and 292 pages of text. Cloth, $3.00 net.

This excellent volume is the first attempt to supply in English an illustrated clinical handbook to act as a worthy substitute for personal instruction in a specialized clinic. This work is both didactic and clinical in its teaching, the latter aspect being especially adapted to the student's wants.

Clarence J. Blake, M. D.,
Professor of Otology, Harvard University Medical School, Boston.
"The most complete work of its kind as yet published, and one commending itself to both the student and teacher in the character and scope of its illustrations."

Grünwald and Newcomb's Mouth, Pharynx, Nose

Atlas and Epitome of Diseases of the Mouth, Pharynx, and Nose. By Dr. L. Grünwald, of Munich. Edited, with additions, by James E. Newcomb, M. D., Instructor in Laryngology, Cornell University Medical School. With 200 illustrations on 42 colored lithographic plates, 41 text-cuts, and 219 pages of text. Cloth, $3.00 net.

Journal of Ophthalmology, Otology, and Laryngology
"A collection of the most naturally colored lithographic plates that has been published in any book in the English language. . . . Very valuable alike to the student, the practitioner, and the specialist."

They are offered at a price heretofore unapproached in cheapness
Sobotta and Huber's Human Histology

Atlas and Epitome of Human Histology. By Pr. Dr. J. Sobotta, of Würzburg. Edited, with additions, by G. Carl Huber, M. D., Professor of Histology and Embryology, University of Michigan, Ann Arbor. With 214 colored figures on 80 plates, 68 text-cuts, and 248 pages of text. Cloth, $4.50 net.

This work combines an abundance of well chosen and most accurate illustrations with a concise text, and in such a manner as to make it both atlas and text-book. The colored lithographic plates have been produced with the aid of over thirty colors, and particular care was taken to avoid distortion and assure exactness of magnification.

Boston Medical and Surgical Journal

"In color and proportion they are characterized by gratifying accuracy and lithographic beauty. . . . May be highly recommended to those who are without access to histologic collections."

Haab and deSchweinitz's Operative Ophthalmology

RECENTLY ISSUED

This new volume forms an admirable conclusion of the series of atlases on the Eye prepared by Professor Haab. Operations are described with all the fidelity and clearness that thirty years' conscientious practice in eye work naturally brings. The colored illustrations exhibit the same perfection of art and accurateness of detail which are found only in this invaluable series of atlases.

Unsurpassed for accuracy, pictorial beauty, completeness, cheapness
Haab and deSchweinitz's
Ophthalmoscopy

Not only is the student made acquainted with carefully prepared ophthalmoscopic drawings done into well-executed lithographs of the most important fundus changes, but, in many instances, plates of the microscopic lesions are added. It furnishes a manual of the greatest possible service.

The Lancet, London
"We recommend it as a work that should be in the ophthalmic wards or in the library of every hospital into which ophthalmic cases are received."

Haab and deSchweinitz's
External Diseases of Eye

SECOND REVISED EDITION—RECENTLY ISSUED
In this thorough revision the text has been brought up to date by the addition of new matter, including references to some of the modern therapeutic agents. There have also been added eight chromolithographic plates.

The Medical Record, New York
"The work is excellently suited to the student of ophthalmology and to the practising physician. It cannot fail to attain a well-deserved popularity." (Review of previous ed.)

They are convenient in size and uniformly bound
Dürck and Hektoen's
General Pathologic Histology

Atlas and Epitome of General Pathologic Histology.
By Pr. Dr. H. Dürck, of Munich. Edited, with additions, by Ludvig Hektoen, M.D., Professor of Pathology, Rush Medical College, Chicago. 172 colored figures on 77 lithographic plates, 36 text-cuts, many in colors, and 453 pages of text. $5.00 net.

JUST ISSUED

This new atlas gives the accepted views in regard to the significance of pathologic processes. All the illustrations have been made from original specimens without combining different microscopic fields. Extraordinary care has been taken to reproduce them as near perfection as possible, in many cases twenty-six colors being required.

Dürck and Hektoen's
Special Pathologic Histology

Atlas and Epitome of Special Pathologic Histology.
By Dr. H. Dürck, of Munich. Edited, with additions, by Ludvig Hektoen, M.D., Professor of Pathology, Rush Medical College, Chicago. In Two Parts. Part I.—Circulatory, Respiratory, and Gastro-intestinal Tracts. Part II.—Liver, Urinary and Sexual Organs, Nervous System, Skin, Muscles, and Bones. 243 colored figures on 122 plates, and 350 pages of text. Per part: Cloth, $3.00 net.

William H. Welch, M.D.,
Professor of Pathology, Johns Hopkins University, Baltimore.

"I consider Dürck's 'Atlas of Special Pathologic Histology,' edited by Hektoen, a very useful book for students and others. The plates are admirable."

They represent the best artistic and professional talent
Lehmann, Neumann, and Weaver's Bacteriology

Atlas and Epitome of Bacteriology: including a Text-Book of Special Bacteriologic Diagnosis. By Prof. Dr. K. B. Lehmann and Dr. R. O. Neumann, of Würzburg. From the Second Revised and Enlarged German Edition. Edited, with additions, by G. H. Weaver, M. D., Assistant Professor of Pathology and Bacteriology, Rush Medical College, Chicago. In two parts. Part I.—632 colored figures on 69 lithographic plates. Part II.—511 pages of text, illustrated. Per part: Cloth, $2.50 net.

INCLUDING SPECIAL BACTERIOLOGIC DIAGNOSIS

This work furnishes a survey of the properties of bacteria, together with the causes of disease, disposition, and immunity, reference being constantly made to an appendix of bacteriologic technic. The special part gives a complete description of the important varieties, the less important ones being mentioned when worthy of notice. The lithographic plates, as in all this series, are accurate representations of the conditions as actually seen, and this collection, if anything, is more handsome than any of its predecessors. As an aid in original investigation the work is invaluable.

OPINIONS OF THE MEDICAL PRESS

American Journal of the Medical Sciences

"Practically all the important organisms are represented, and in such a variety of forms and cultures that any other atlas would rarely be needed in the ordinary hospital laboratory."

The Lancet, London

"We have found the work a more trustworthy guide for the recognition of unfamiliar species than any with which we are acquainted."

There have been 82,000 copies imported since publication
Schäffer and Edgar's
Labor and Operative Obstetrics

Atlas and Epitome of Labor and Operative Obstetrics.
By Dr. O. Schäffer, of Heidelberg. From the Fifth Revised and Enlarged German Edition. Edited, with additions, by J. Clifton Edgar, M. D., Professor of Obstetrics and Clinical Midwifery, Cornell University Medical School. 14 lithographic plates in colors; 139 other cuts; 111 pages of text. $2.00 net.

The book presents the act of parturition and the various obstetric operations in a series of easily understood illustrations. These are accompanied by a text that treats the subject from a practical standpoint.

Dublin Journal of Medical Science, Dublin

"One fault Professor Schäffer's Atlases possess. Their name, and the extent and number of the illustrations, are apt to lead one to suppose that they are merely 'atlases,' whereas the truth really is they are also concise and modern epitomes of obstetrics."

Schäffer & Edgar's Obstetric Diagnosis and Treatment

Atlas and Epitome of Obstetric Diagnosis and Treatment.
By Dr. O. Schäffer, of Heidelberg. From the Second Revised German Edition. Edited, with additions, by J. Clifton Edgar, M. D., Professor of Obstetrics and Clinical Midwifery, Cornell University Medical School. 122 colored figures on 56 plates; 38 other cuts; 315 pages of text. $3.00 net.

This book treats particularly of obstetric operations, and, besides the wealth of beautiful lithographic illustrations, contains an extensive text of great value. This text deals with the practical, clinical side of the subject.

New York Medical Journal

"The illustrations are admirably executed, as they are in all of these atlases, and the text can safely be commended, not only as elucidatory of the plates, but as expounding the scientific midwifery of to-day."

These are the famous "Lehmann medicinische Handatlanten"
Mracek and Stelwagon's Skin

Atlas and Epitome of Diseases of the Skin. By Prof. Dr. Franz Mracek, of Vienna. Edited, with additions, by Henry W. Stelwagon, M.D., Professor of Dermatology in the Jefferson Medical College, Philadelphia. With 77 colored plates, 50 text-cuts, and 288 pages of text. Cloth, $4.00 net.

JUST ISSUED—NEW (2d) EDITION

This volume, the outcome of years of scientific and artistic work, contains, together with colored plates of unusual beauty, numerous illustrations in black, and a text comprehending the entire field of dermatology. The illustrations are all original and prepared from actual cases in Mracek's clinic.

American Journal of the Medical Sciences

"The advantages which we see in this book and which recommend it to our minds are: First, its handiness; secondly, the plates, which are excellent as regards drawing, color, and the diagnostic points which they bring out. We most heartily recommend it."

Mracek and Bang's Syphilis and Venereal Diseases

Atlas and Epitome of Syphilis and the Venereal Diseases. By Prof. Dr. Franz Mracek, of Vienna. Edited, with additions, by L. Bolton Bangs, M.D., late Prof. of Genito-Urinary Surgery, University and Bellevue Hospital Medical College, New York. With 71 colored plates and 122 pages of text. Cloth, $3.50 net.

According to the unanimous opinion of numerous authorities, to whom the original illustrations of this book were presented, they surpass in beauty anything of the kind that has been produced in this field, not only in Germany, but throughout the literature of the world.

Robert L. Dickinson, M.D.,
Art Editor of "The American Text-Book of Obstetrics."

"The book that appeals instantly to me for the strikingly successful, valuable, and graphic character of its illustrations is the 'Atlas of Syphilis and the Venereal Diseases.' I know of nothing in this country that can compare with it."

The lithographs, all made in Germany, are unrivalled.
Schäffer and Webster's Operative Gynecology

Atlas and Epitome of Operative Gynecology. By Dr. O. Schäffer, of Heidelberg. Edited, with additions, by J. Clarence Webster, M. D. (Edin.), F. R. C. P. E., Professor of Obstetrics and Gynecology in the Rush Medical College, in affiliation with the University of Chicago. With 42 lithographic plates in colors, many text-cuts, a number in colors, and 138 pages of text. Cloth, $3.00 net.

RECENTLY ISSUED

The excellence of the lithographic plates and the many other illustrations in this atlas render it of the greatest value in obtaining a sound and practical knowledge of operative gynecology. Indeed, the artist, the author, and the lithographer have expended much patient endeavor in the preparation of the water-colors and drawings. They are based on hundreds of photographs taken from nature, and they reproduce faithfully and instructively the various situations. The text closely follows the illustrations, and is fully as accurate.

Schäffer and Norris' Gynecology

The value of this atlas will be found not only in the concise explanatory text, but especially in the illustrations. The large number of colored plates, reproducing the appearance of fresh specimens, will give the student a knowledge of the changes induced by disease that cannot be obtained from mere description.

Bulletin of Johns Hopkins Hospital, Baltimore

"The book contains much valuable material. Rarely have we seen such a valuable collection of gynecological plates."

These books are next best to actual clinical work
Jakob and Eshner's Internal Medicine & Diagnosis

In addition to an admirable atlas of clinical microscopy, this volume describes the physical signs of all internal diseases in an instructive manner by means of fifty colored schematic diagrams. As a means of instruction its value is very great; as a reference handbook it is admirable.

British Medical Journal
"Dr. Jakob's work deserves nothing but praise. The information is accurate and up to present-day requirements."

Grünwald and Grayson's Diseases of the Larynx

This atlas exemplifies a happy blending of the didactic and clinical, such as is not to be found in any other volume upon this subject. The author has given special attention to the clinical portion of the work, the sections on diagnosis and treatment being particularly full.

The Medical Record, New York
"This is a good work of reference, being both practical and concise. . . . It is a valuable addition to existing laryngeal text-books."

For "Special Offer" regarding these atlases see page I
Hofmann and Peterson's Legal Medicine

Atlas of Legal Medicine. By Dr. E. von Hofmann, of Vienna. Edited by Frederick Peterson, M. D., Clinical Professor of Psychiatry, College of Physicians and Surgeons, N. Y. 120 colored figures on 56 plates, 193 text-cuts. $3.50 net.

The Practitioner, London

"The illustrations appear to be the best that have ever been published in connection with this department of medicine, and they cannot fail to be useful alike to the medical jurist and to the student of forensic medicine."

Jakob and Fisher's Nervous System and its Diseases

Philadelphia Medical Journal

"We know of no one work of anything like equal size which covers this important and complicated field with the clearness and scientific fidelity of this hand-atlas."

Golebiewski and Bailey's Accident Diseases

Medical Examiner and Practitioner

"It is a useful addition to life-insurance libraries, for lawyers, physicians, and for every one who is brought in contact with the treatment or consideration of accidents or diseases growing out of them, or legal complications flowing from them."

The "Atlas of Operative Surgery" has been adopted by U. S. Army
This book must be returned to the Dental Library by the last date stamped below. It may be renewed if there is no reservation for it.
PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY